DEVELOPING THE EQUATION OF A LINE

In this section we are going to rely greatly on the slope-intercept form of a linear equation. For example, if a line has a slope of $m = \frac{3}{8}$, then that means that we can replace m with $\frac{3}{8}$:

$$y = mx + b \text{ becomes } y = \frac{3}{8}x + b$$
Example 1: For each given value of *m*, replace *m* in the $y = mx + b$ equation.
a) $m = \frac{6}{5}$ b) $m = -\frac{1}{4}$ c) $m = -3$ d) $m = 1$
Answer:
a) $y = \frac{6}{5}x + b$ b) $y = -\frac{1}{4}x + b$ c) $y = -3x + b$ d) $y = 1x + b$
You Try It 1 For each given value of *m*, replace *m* in the $y = mx + b$ equation. Use Example 1 as a guide.

a)
$$m = 4$$
 b) $m = \frac{2}{7}$ c) $m = -1$ d) $m = -\frac{2}{5}$

Likewise, if a different line passes through the point (-2, 3), then the values x = -2 and y = 3 are, together, a single solution to the equation. This means that we can replace x and y with -2 and 3, respectively, and still have a true equation:

$$y = mx + b$$
 becomes $3 = m \cdot (-2) + b$

Example 2: For the given ordered pair (x, y), and the given value of m, replace y, m, and x in the y = mx + b equation. **Do not solve at this time**. a) $(-10, 3); m = \frac{6}{5}$ b) $(8, -2); m = \frac{1}{4}$ c) (-5, -4); m = -3 d) (2, 0); m = 1 **Procedure:** It might be helpful to place a little (x, y) over each ordered pair to identify the x- and y-values with certainty. **Answers:** a) $3 = \frac{6}{5}(-10) + b$ b) $-2 = -\frac{1}{4}(8) + b$ c) -4 = -3(-5) + b d) 0 = 1(2) + b