Consider, for example, the product of the multiplier $-2x^2$ and the quantity $(4x^3 - 3x)$. As a product, this looks like $-2x^2(4x^3 - 3x)$. The terms in the quantity are $+4x^3$ and -3x.

The step-by-step process is this:

	$-2x^2(4x^3 - 3x)$	Distribute $-2x^2$ to each term in the quantity. Treat $-3x$ as $-3x$.
=	$(-2x^2)(4x^3) + (-2x^2)(-3x)$	Notice that the original minus sign now appears as part of the $-3x$ term.
=	$-2 \cdot 4 \cdot x^{2+3} + (-2) \cdot (-3) \cdot x^{2+1}$	
=	$-8x^5 + (+6x^3)$	This step is not necessary, but it emphasizes the multiplication of two negative coefficients: (-2)(-3) = + 6.
=	$-8x^5 + 6x^3$	Notice that the signs of this binomial are different from the original quantity, $(4x^3 - 3x)$ because the multiplier, $-2x^2$, is negative.

We can check this result to see if we multiplied correctly. Replace x with 1:

Original Product
$$\stackrel{?}{=}$$
 Answer
 $-2(4-3) \stackrel{?}{=} -8 + 6$
 $-2(1) \stackrel{?}{=} -2$
 $-2 = -2 \checkmark$ True Now mentally check the exponents for accuracy.

It's possible to distribute in fewer steps, as demonstrated here:

Think of $-2x^2$ being distributed to each term: $-8x^5$ $-2x^2(4x^3 - 3x)$ Treat $4x^3$ as $+4x^3$ and -3x as -3x. $(-2x^2)(+4x^3) = -8x^5$; $(-2x^2)(-3x) = +6x^3$, or plus $6x^3$. $= -8x^5 + 6x^3$ To successfully multiply in one step, be aware of

- i) the signs of the terms being multiplied, and
- ii) the sign of the resulting product.