Quadratic Solution, The Babylonian Method

Taken from:
http://occawlonline.pearsoned.com/bookbind/pubbooks/angel_awl/chapter1/medialib/internet_projects/chap ter6/algebra/algebra.html
but it's easier to find it in a Google search: "Chapter 6" "Quadratics in History".
Consider this problem:
A rectangular plot of land is 20 yards longer than it is wide and has an area of 800 square yards. What are the dimensions of the plot?

Here is a modern algebraic solution:

$$
\begin{aligned}
& \text { let } \mathrm{W}=\text { width of rectangle } \quad \mathrm{L}=\mathrm{W}+20 \\
& \text { let } L=\text { length of rectangle } \quad L \cdot W=800 \\
& (\mathrm{~W}+20) \cdot \mathrm{W}=800 \\
& \mathrm{~W}^{2}+20 \mathrm{~W}-800=0 \\
& (\mathrm{~W}+40)(\mathrm{W}-20)=0 \\
& \mathrm{~W}=-40 \text { (not possible) or } \mathrm{W}=20 \text { (Solution) }
\end{aligned}
$$

So, the width is 20 yards and the length is 40 yards.

Of course, the ancient mathematicians didn't have the luxury of algebraic symbols, so everything was constructed geometrically, under a set of established rules. Here is the Babylonian solution to this problem:
a) find half of the difference between the length and width: $\frac{20}{2}=10$ yards.
b) Square this value: $10^{2}=100$
c) Add the known area to this square: $100+800=900$
d) Take the square root of this value: $\sqrt{900}=30$
e) To this square root, add half of the difference to get L and subtract half the difference to get W :
$\mathrm{L}=30+10=\mathbf{4 0} ; \mathrm{W}=30-10=\mathbf{2 0}$ which is consistent with our modern solution.

Let's see what this looks like algebraically:
$\mathrm{L}=\mathrm{W}+\mathrm{d}$
$\mathrm{L} \cdot \mathrm{W}=\mathrm{A}$
a) find half of the difference between the length and width: $\frac{\mathrm{d}}{2}$
b) Square this value: $\left(\frac{d}{2}\right)^{2}=\frac{\mathrm{d}^{2}}{4}$
c) Add the known area to this square: $\frac{\mathrm{d}^{2}}{4}+\mathrm{A}$
d) Take the square root of this value: $\sqrt{\frac{d^{2}}{4}+A}$
e) To this square root, add half of the difference to get L and subtract half the difference to get W :
$\mathrm{L}=\sqrt{\frac{\mathrm{d}^{2}}{4}+\mathrm{A}}+\frac{\mathrm{d}}{2}$
$W=\sqrt{\frac{d^{2}}{4}+A}-\frac{d}{2}$
$\mathrm{L}=\sqrt{\frac{\mathrm{d}^{2}}{4}+\frac{4 \mathrm{~A}}{4}}+\frac{\mathrm{d}}{2}$
$W=\sqrt{\frac{\mathrm{d}^{2}}{4}+\frac{4 \mathrm{~A}}{4}}-\frac{\mathrm{d}}{2}$
$\mathrm{L}=\sqrt{\frac{\mathrm{d}^{2}+4 \mathrm{~A}}{4}}+\frac{\mathrm{d}}{2}$
$\mathrm{W}=\sqrt{\frac{\mathrm{d}^{2}+4 \mathrm{~A}}{4}}-\frac{\mathrm{d}}{2}$
$L=\frac{\sqrt{\mathrm{d}^{2}+4 \mathrm{~A}}}{2}+\frac{\mathrm{d}}{2}$
$\mathrm{W}=\frac{\sqrt{\mathrm{d}^{2}+4 \mathrm{~A}}}{2}-\frac{\mathrm{d}}{2}$
$\mathrm{L}=\frac{\mathrm{d}+\sqrt{\mathrm{d}^{2}+4 \mathrm{~A}}}{2} \quad \mathrm{~W}=\frac{-\mathrm{d}+\sqrt{\mathrm{d}^{2}+4 \mathrm{~A}}}{2}$

These might be considered "cousins" of the quadratic formula.

