Developing the Quadratic Formula, Two Traditional Approaches

The Most Common Traditional Approach
Completing the square using $(x+\mathrm{d})^{2}=x^{2}+2 \mathrm{~d} x+\mathrm{d}^{2}$.

$$
\text { If } a x^{2}+b x+c=0, a>0^{*}
$$

we can solve for x by completing the square:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

Divide each side (each term) by a: $\quad x^{2}+\frac{b}{a} x+\frac{c}{a}=0$

$$
\begin{equation*}
\text { Add }-\frac{\mathrm{c}}{\mathrm{a}} \text { to each side: } \quad x^{2}+\frac{\mathrm{b}}{\mathrm{a}} x=-\frac{\mathrm{c}}{\mathrm{a}} \tag{2}
\end{equation*}
$$

Complete the square by adding the square
of half of the linear coefficient to each side: $x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}$

$$
x^{2}+\frac{\mathrm{b}}{\mathrm{a}} x+\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}}=\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}}-\frac{\mathrm{c}}{\mathrm{a}}
$$

The left side is a perfect square trinomial: $\quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
Simplify the right side of the equation: $\quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{4 a c}{4 a^{2}}$
Take the square root of each side: $\quad \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}$

$$
\begin{equation*}
\sqrt{\arg ^{2}}=|\arg | \quad\left|x+\frac{\mathrm{b}}{2 \mathrm{a}}\right|=\sqrt{\frac{\mathrm{b}^{2}-4 \mathrm{ac}}{4 \mathrm{a}^{2}}} \tag{8}
\end{equation*}
$$

If $|\arg |=p$, then $\arg = \pm p: \quad \quad x+\frac{b}{2 \mathrm{a}} \quad= \pm \frac{\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{\sqrt{4 \mathrm{a}^{2}}}$

Add $-\frac{\mathrm{b}}{2 \mathrm{a}}$ to each side:
$x=-\frac{\mathrm{b}}{2 \mathrm{a}} \pm \frac{\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

* Having a >0 allows us to write $\sqrt{4 \mathrm{a}^{2}}=2 \mathrm{a}$ in step (11). There is no loss in generality in saying so, and the quadratic formula is, ultimately, no different if $\mathrm{a}<0$. However, $\mathrm{a} \neq 0$ is a requirement.

A Less Common Traditional Approach

Completing the square using $(2 \mathrm{a} x+\mathrm{b})^{2}=4 \mathrm{a}^{2} x^{2}+4 \mathrm{ab} x+\mathrm{b}^{2}$.

$$
\text { If } a x^{2}+b x+c=0, a \neq 0
$$

we can solve for x by completing the square:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

Multiply each side by 4a: $\quad 4 \mathrm{a}^{2} x^{2}+4 \mathrm{ab} x+4 \mathrm{ac}=0$

$$
\begin{equation*}
\text { Add - 4ac to each side: } \quad 4 a^{2} x^{2}+4 a b x=-4 a c \tag{2}
\end{equation*}
$$

Complete the square by adding b^{2} to each side: $4 \mathrm{a}^{2} x^{2}+4 \mathrm{ab} x+\mathrm{b}^{2}=\mathrm{b}^{2}-4 \mathrm{ac}$

The left side is a perfect square trinomial:

$$
\begin{equation*}
(2 \mathrm{a} x+\mathrm{b})^{2}=\mathrm{b}^{2}-4 \mathrm{ac} \tag{5}
\end{equation*}
$$

Take the square root of each side: $\quad \sqrt{(2 \mathrm{ax}+\mathrm{b})^{2}}=\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}$

$$
\begin{equation*}
\sqrt{\arg ^{2}}=|\arg | \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
|2 \mathrm{ax}+\mathrm{b}|=\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}} \tag{6}
\end{equation*}
$$

If $|\arg |=\mathrm{p}$, then $\arg = \pm \mathrm{p}: \quad \quad 2 \mathrm{a} x+\mathrm{b}= \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}$
Add - b to each side:

$$
\begin{align*}
2 \mathrm{ax} & =-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}} \tag{9}\\
x & =\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{align*}
$$

The Quadratic Formula

If $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0, \mathrm{a} \neq 0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

Some prefer to write this as $x=\frac{-\mathrm{b}}{2 \mathrm{a}} \quad \pm \frac{\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ in order to reduce student errors oftentimes associated with the application of this formula.

