Name
Evaluate each using integration by parts.

1. $\int x^{2} e^{x} d x$
2. $\int x^{-3} \ln x d x$
3. $\int e^{-x} \sin x d x$

Evaluate each trigonometric integral.
4. $\int(\sec x+\tan x)^{2} d x$
5. $\int \cos ^{3} x d x$
6. $\int \sec ^{4} x d x$

Evaluate each using trigonometric substitution.
7. $\int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$
8. $\int \frac{\sqrt{x^{2}-1}}{x} d x$

Find the partial fraction decomposition of each.
9. $\frac{2-x}{x^{3}+x^{2}}$
10. $\frac{3 x+7}{x^{3}-x^{2}+4 x-4}$

The partial fraction decomposition of $\frac{x+4}{x^{3}+4 x}$ is $\quad \frac{1}{x}+\frac{-x+1}{x^{2}+4} \quad$ Use this to evaluate the following integral
11. $\int \frac{x+4}{x^{3}+4 x} d x$

Here is \#49 (altered slightly) from the Table of Integrals. Use a technique of integration to show that this is true.
12. $\int \frac{d x}{x(n x+k)}=\frac{1}{k} \ln \left|\frac{x}{n x+k}\right|+C$

Evaluate each using a familiar but unusual technique of integration.
13. $\int \frac{1}{2-\sqrt{x}} d x$

