Math 1B Chapter 7 Pre-Test (Sec. 7.1 - 7.5)

Evaluate each using integration by parts.

1.
$$\int x^2 e^x dx$$
 2. $\int x^{-3} \ln x dx$ **3.** $\int e^{-x} \sin x dx$

Evaluate each trigonometric integral.

4. $\int (\sec x + \tan x)^2 dx$ **5.** $\int \cos^3 x dx$ **6.** $\int \sec^4 x dx$

Evaluate each using trigonometric substitution.

7.
$$\int \frac{1}{x^2\sqrt{4-x^2}} dx$$
 8. $\int \frac{\sqrt{x^2-1}}{x} dx$

Find the partial fraction decomposition of each.

9.
$$\frac{2-x}{x^3+x^2}$$
 10. $\frac{3x+7}{x^3-x^2+4x-4}$

The partial fraction decomposition of $\frac{x+4}{x^3+4x}$ is $\frac{1}{x} + \frac{-x+1}{x^2+4}$ Use this to evaluate the following integral

$$11. \quad \int \quad \frac{x+4}{x^3+4x} \ dx$$

Here is #49 (altered slightly) from the Table of Integrals. Use a technique of integration to show that this is true.

12.
$$\int \frac{dx}{x(nx+k)} = \frac{1}{k} \ln \left| \frac{x}{nx+k} \right| + C$$

Evaluate each using a familiar but unusual technique of integration.

$$13. \int \frac{1}{2-\sqrt{x}} dx$$

Name