Composite Functions

FUNCTIONAL VALUES

In a previous discussion, we looked at finding values of a function by replacing the **argument** with a number (in the domain).

For example, for f(x) = -5x + 4, we can replace the argument, x, with 3 or -3 and find the corresponding range value:

a)
$$f(3) = -5(3) + 4$$

 $= -15 + 4$
 $= -11$
b) $f(-3) = -5(-3) + 4$
 $= 15 + 4$
 $= 19$

This gives the ordered pair (3, -11).

This gives the ordered pair (-3, 19).

We can also replace the argument with other variable arguments.

For example, for f(x) = -5x + 4, we can replace the argument, x, with a, with 2a, or with a + 3:

a) $f(a) = -5(a) + 4$	b) $f(2a) = -5(2a) + 4$	c) $f(a+3) = -5(a+3) + 4$
= -5a + 4	= -10a + 4	= -5a - 15 + 4
		= -5a - 11

Note: We don't typically make ordered pairs from these types of values.

As a reminder, the new argument gets replaced in each and every *x*-value.

Example 1: Given $g(x) = x^2 - 3x - 4$, find the following:

a) g(a) b) g(2a) c) g(a+1)

Procedure: For each, replace *x* with the requested argument.

Answer:

a) Replace each *x* with *a*:

 $g(a) = a^2 - 3a - 4$

b) Replace each x with 2a; simplify. $g(2a) = (2a)^2 - 3(2a) - 4$ $g(2a) = 4a^2 - 6a - 4$ c) Replace each x with the quantity (a + 1):

$$g(a+1) = (a+1)^2 - 3(a+1) - 4$$

$$= a^2 + 2a + 1 - 3a - 3 - 4$$

Simplify by combining like terms

$$g(a+1) = a^2 - a - 6$$

Group Exercise 1		Given $h(x) = \frac{x^2 - 4}{x - 1}$, find the following:
a)	h(3a)	b) $h(a-2)$

It's also possible the new argument contains an *x*.

Gre	oup Exercise 2	Given h	(x) = 9 -	2x, find the following:	
a)	$h\left(\frac{1}{2}x\right)$	b)	$h(x^2)$	c)	h(5x+1)

COMPOSITE FUNCTIONS

In fact, we can also replace an argument in one function, f(x), with another function, g(x). This is called the *composition* of two functions. The result is another function.

f(x) composed with g(x) is written $f \circ g(x)$, which can also be written as f[g(x)]g(x) composed with f(x) is written $g \circ f(x)$, which can also be written as g[f(x)]

It is even possible to consider a function composed with itself: $f \circ f(x) = f[f(x)]$. Crazy!

Example 3:		Given $f(x) = 3x - 1$ and $g(x) = x^2 + 2$, find the following:			owing:
a)	$f \circ g(x)$	b)	$g \circ f(x)$	c)	$f \circ f(x)$

Procedure: First write each with the second function "inside" the first. The "replacement value" is a full function.

Answer:

a)
$$f \circ g(x)$$

 $f[g(x)] = f(x^2 + 2)$
 $= 3(x^2 + 2) - 1$
 $= 3x^2 + 6 - 1$
 $= 3x^2 + 5$
b) $g \circ f(x)$
 $g[f(x)] = g(3x - 1)$
 $= g(3x - 1)^2 + 2$
 $= 9x^2 - 6x + 1 + 2$
 $= 9x^2 - 6x + 3$
c) $f \circ f(x)$
 $f[g(x)] = f(3x - 1)$
 $= g(3x - 1)^2 + 2$
 $= g(3x - 1)^2 + 2$
 $= g(3x - 1) - 1$
 $= g(3x$

Group Exercise 3	Given $f(x) = 3x - 2$ and	$g(x) = x^2 - x$, find the following:
------------------	---------------------------	--

a) $f \circ g(x)$ b) $g \circ f(x)$

Group Exercise 4Given $f(x) = \frac{2}{3}x - 1$ and $g(x) = \frac{3x + 3}{2}$, find the following:a) $f \circ g(x)$ b) $g \circ f(x)$

Focus Exercises

Given $f(x) = 2x - 3$ and $g(x) = x^2 - x + 2$, find the following.			
1.	<i>f</i> (3 <i>w</i>)	2.	$f(2c^2)$
3.	f(x-2)	4.	g(3w)
5.	$g(2c^2)$	6.	<i>g</i> (<i>x</i> – 2)

7. $f \circ g(x)$ **8.** $f \circ f(x)$

 $9. \quad g \circ f(x)$