Composite Functions

Functional Values

In a previous discussion, we looked at finding values of a function by replacing the argument with a number (in the domain).

For example, for $f(x)=-5 x+4$, we can replace the argument, \boldsymbol{x}, with 3 or -3 and find the corresponding range value:
a) $\quad f(3)=-5(3)+4$
$=-15+4$
$=-11$
b) $\quad f(-3)=-5(-3)+4$
$=15+4$
$=19$

This gives the ordered pair ($3,-11$).
This gives the ordered pair $(-3,19)$.
We can also replace the argument with other variable arguments.
For example, for $f(x)=-5 x+4$, we can replace the argument, x, with a, with $2 a$, or with $a+3$:
a) $\begin{aligned} f(a) & =-5(a)+4 \\ & =-5 a+4\end{aligned}$
b) $\quad \begin{aligned} f(2 a) & =-5(2 a)+4 \\ & =-10 a+4\end{aligned}$

$$
\text { c) } \begin{aligned}
f(a+3) & =-5(a+3)+4 \\
& =-5 a-15+4 \\
& =-5 a-11
\end{aligned}
$$

Note: We don't typically make ordered pairs from these types of values.
As a reminder, the new argument gets replaced in each and every x-value.
Example 1: Given $g(x)=x^{2}-3 x-4$, find the following:
a) $\quad g(a)$
b) $g(2 a)$
c) $g(a+1)$

Procedure: \quad For each, replace x with the requested argument.

Answer:

a) Replace each x with a :

$$
g(a)=a^{2}-3 a-4
$$

b) Replace each x with $2 a$; simplify.

$$
g(2 a)=(2 a)^{2}-3(2 a)-4
$$

$$
g(2 a)=4 a^{2}-6 a-4
$$

c) Replace each x with the quantity $(a+1)$:

$$
\begin{aligned}
g(a+1) & =(a+1)^{2}-3(a+1)-4 \\
& =a^{2}+2 a+1-3 a-3-4
\end{aligned}
$$

Simplify by combining like terms

$$
g(a+1)=a^{2}-a-6
$$

$\overline{\text { Group Exercise 1 }}$ Given $h(x)=\frac{x^{2}-4}{x-1}$, find the following:
a) $\quad h(3 a)$
b) $\quad h(a-2)$

It's also possible the new argument contains an x.
Group Exercise 2 Given $h(x)=9-2 x$, find the following:
a) $h\left(\frac{1}{2} x\right)$
b) $\quad h\left(x^{2}\right)$
c) $h(5 x+1)$

Composite Functions

In fact, we can also replace an argument in one function, $f(x)$, with another function, $g(x)$. This is called the composition of two functions. The result is another function.
$f(x)$ composed with $g(x)$ is written $f \circ g(x)$, which can also be written as $f[g(x)]$
$g(x)$ composed with $f(x)$ is written $g \circ f(x)$, which can also be written as $g[f(x)]$

It is even possible to consider a function composed with itself: $f \circ f(x)=f[f(x)]$. Crazy!
Example 3: Given $f(x)=3 x-1$ and $g(x)=x^{2}+2$, find the following:
a) $f \circ g(x)$
b) $g \circ f(x)$
c) $f \circ f(x)$

Procedure: First write each with the second function "inside" the first. The "replacement value" is a full function.

Answer:

a) $f \circ g(x)$
$f[g(x)]=f\left(x^{2}+2\right)$
$=3\left(x^{2}+2\right)-1$
$=3 x^{2}+6-1$
$=3 x^{2}+5$
b) $g \circ f(x)$
$g[f(x)]=g(3 x-1)$
$=(3 x-1)^{2}+2$
$=9 x^{2}-6 x+1+2$
$=9 x^{2}-6 x+3$

$$
\begin{aligned}
& \text { c) } \quad f \circ f(x) \\
& \begin{aligned}
f[g(x)] & =f(3 x-1) \\
& =3(3 x-1)-1 \\
& =9 x-3-1 \\
& =9 x-4
\end{aligned}
\end{aligned}
$$

$\overline{\text { Group Exercise } 3}$ Given $f(x)=3 x-2$ and $g(x)=x^{2}-x$, find the following:
a) $f \circ g(x)$
b) $g \circ f(x)$
$\overline{\text { Group Exercise } 4}$ Given $f(x)=\frac{2}{3} x-1$ and $g(x)=\frac{3 x+3}{2}$, find the following:
a) $f \circ g(x)$
b) $\quad g \circ f(x)$

Focus Exercises

Given $f(x)=2 x-3$ and $g(x)=x^{2}-x+2$, find the following.

1. $f(3 w)$
2. $f\left(2 c^{2}\right)$
3. $f(x-2)$
4. $g(3 w)$
5. $g\left(2 c^{2}\right)$
6. $g(x-2)$
7. $f \circ g(x)$
8. $f \circ f(x)$
9. $g \circ f(x)$
