Even \& Odd Functions

Some functions - not all-have the property of being either "odd" or "even" based on these criteria:

Function Type	Graph Symmetry	Algebraic Property
Even	about the \boldsymbol{y}-axis	$f(-x)=f(x)$
Odd	about the origin	$f(-x)=-f(x)$

Her are examples of the graphs of even and odd functions:

Even	Even	Odd	Odd
$f(x)=x^{2}$	$g(x)=x^{4}-4 x^{2}+3$	$h(x)=x^{3}$	$k(x)=x^{3}-4 x$
y		y	

Group Exercise 1

Given half of the graph of a function - and whether the function is odd or even-draw in the other half. Also, below each graph, fill in each blank and answer the question.
a)
$f(3)=$ \qquad and $f(-3)=$ \qquad
What can you say about $f(3)$ and $f(-3)$?
b) $g(x)$ is an odd function:

$g(3)=$ \qquad and $g(-3)=$ \qquad
What can you say about $g(3)$ and $g(-3)$?
c)
$h(x)$ is an odd function:

$h(3)=$ \qquad and $h(-3)=$ \qquad
What can you say about $h(3)$ and $h(-3)$?
e)
$f(6)=$ \qquad and $f(-6)=$ \qquad
What can you say about $f(6)$ and $f(-6)$?
d) $\quad k(x)$ is an even function:

$k(3)=$ \qquad and $k(-3)=$ \qquad
What can you say about $k(3)$ and $k(-3)$?

$$
g(x) \text { is an odd function: }
$$

$g(6)=$ \qquad and $g(-6)=$ \qquad
What can you say about $g(6)$ and $g(-6)$?

Group Exercise 2 Based on its graph, is this function odd or even? Explain your answer.

Here again are the odd and even functions from the introduction:

Even	Even	Odd	Odd
$f(x)=x^{2}$	$g(x)=x^{4}-4 x^{2}+3$	$h(x)=x^{3}$	$k(x)=x^{3}-4 x$
y		y	

Note 1: $\quad g(x)$ can be written $g(x)=x^{4}-4 x^{2}+3 x^{0}$.
Note 2: $\quad k(x)$ can be written $k(x)=x^{3}-4 x^{1}$.

Group Exercise 3 Use the graphs above to answer these questions:
a) What do you notice about the powers in the two even functions, $f(x)$ and $g(x)$?
b) What do you notice about the powers in the two odd functions, $h(x)$ and $k(x)$?

Group Exercise 4

Group Exercise 5 What type of function is it that has symmetry about the x-axis? Explain your answer.

Here are the algebraic properties of even and odd functions:
EVEN: A function, $f(x)$, is even if $f(-x)=f(x)$ for all domain values.
ODD: A function, $f(x)$, is odd if $f(-x)=-f(x)$ for all domain values.
Example 1: Determine algebraically whether the function is even, odd, or neither.
a) $f(x)=x^{3}-4 x$
b) $g(x)=2 x^{2}+6 x-8$
c) $\quad h(x)=x^{4}-4 x^{2}+3$

Procedure: Find $f(-x)$ and simplify. If the resulting function is the same as $f(x)$, then the function is even; if it is the opposite of $f(x)$, then it is odd; it might also be neither of these options.

Answer:

a) $f(x)=x^{3}-4 x$	Replace each x in the function with - x and simplify.
$f(-x)=(-x)^{3}-4(-x)$	Evaluate each term.
$=-x^{3}+4 x$	Because the lead term is negative, factor out -1 .
$=-1\left(x^{3}-4 x\right)$	In the parentheses is the original $f(x)$, so ...
$f(-x)=-f(x)$	$f(x)$ is an odd function.
b) $g(x)=2 x^{2}+6 x-8$	Replace each x in the function with $-x$ and simplify.
$g(-x)=2(-x)^{2}+6(-x)-8$	Evaluate each term.
$=2 x^{2}-6 x-8$	The lead term is the same as it is for $g(x)$, so g is not odd; however, the middle terms of $g(x)$ and $g(-x)$ are different, so ...
$\begin{aligned} & g(-x) \neq g(x) \quad \text { and } \\ & g(-x) \neq-g(x) \quad \text { so } \ldots \end{aligned}$	$g(x)$ is neither even nor odd.
c) $h(x)=x^{4}-4 x^{2}+3$	Replace each x in the function with $-x$ and simplify.
$h(-x)=(-x)^{4}-4(-x)^{2}+3$	A negative value to an even power is the same as the positive value to an even power. In other words, $(-x)^{2}=x^{2}$
$h(-x)=x^{4}-4 x^{2}+3$	This is identical to the original function, so ...
$h(-x)=h(x)$	$h(x)$ is an even function.

Focus Exercises

For each, use the algebraic properties to determine whether the function is even, odd, or neither.

1. $f(x)=\frac{-2}{3} x$
2. $h(x)=\sqrt[3]{x}$
3. $g(x)=4-x^{2}$
4. $h(x)=5-x^{3}$
