Even & Odd Functions

Some functions—*not all*—have the property of being either "odd" or "even" based on these criteria:

Function Type	Graph Symmetry	Algebraic Property
Even	about the y-axis	f(-x) = f(x)
Odd	about the origin	f(-x) = -f(x)

Her are examples of the graphs of even and odd functions:

Even	Even	Odd	Odd
$f(x) = x^2$	$g(x) = x^4 - 4x^2 + 3$	$h(x) = x^3$	$k(x) = x^3 - 4x$
(-3, 9) $(-1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$	(-2, 3) $(-1, 0)$ $(1, 0)$ $(2, 3)$ $(2, 3)$	y (2, 8) (1, 1) (-1, -1) (-2, -8)	(-2, 0) (-3, -15) (-3, -15) (-3, -15) (-3, -15) (-3, -15) (-3, -15)

Group Exercise 1

Given half of the graph of a function—and whether the function is odd or even—draw in the other half. Also, below each graph, fill in each blank and answer the question.

f(x) is an even function: b) g(x) is an odd function: a) y y 6 6 g(x)f(x)(3 4)(3.4)4 4 (6, 5)(6, 5)2 ż (2, 2)(2, 2)х х -4--2 -6 -4 -2 4 2 2 -6 4 6 6 -2 -2 -4 -4 -6 -6 $f(3) = ___$ and f(-3) =g(3) =_____ and g(-3) =What can you say about f(3) and f(-3)? What can you say about g(3) and g(-3)?

Group Exercise 2

Based on its graph, is this function odd or even? Explain your answer.

Here again are the odd and even functions from the introduction:

Even	Even	Odd	Odd
$f(x) = x^2$	$g(x) = x^4 - 4x^2 + 3$	$h(x) = x^3$	$k(x) = x^3 - 4x$
(-3, 9) $(-1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$	y (-2, 3) (-1, 0) (1, 0) (2, 3) x	y (2, 8) (1, 1) (-1, -1) (-2, -8)	(-2, 0) (-3, -15) (-3, -15) (-3, -15) (-3, -15) (-3, -15) (-3, -15)

Note 1: g(x) can be written $g(x) = x^4 - 4x^2 + 3x^0$. **Note 2:** k(x) can be written $k(x) = x^3 - 4x^1$.

Group Exercise 3 Use the graphs above to answer these questions:

- a) What do you notice about the powers in the two even functions, f(x) and g(x)?
- b) What do you notice about the powers in the two odd functions, h(x) and k(x)?

Group Exercise 4

Consider the function, $p(x) = x^3 - 3x^2 + 2$, which has the graph shown at right.

Based on the function, itself, is p(x) odd or even or both? Explain your answer.

Group Exercise 5What type of function is it that has symmetry about the x-axis? Explain your
answer.

Here are the *algebraic* properties of even and odd functions:

	EVEN:	A function, $f(x)$, is even if $f(-x)$	f(x) = f(x) for all domain values.
	ODD:	A function, $f(x)$, is odd if $f(-x)$	= -f(x) for all domain values.
Example 1: Determine algebraically whether		Determine algebraically wheth	er the function is even, odd, or neither.
a) j	$f(x) = x^3$	-4x b) $g(x) = 2x$	$h^2 + 6x - 8$ c) $h(x) = x^4 - 4x^2 + 3$
		is <i>even</i> ; if it is the opposite of <i>j</i>	resulting function is the same as $f(x)$, then the function $f(x)$, then it is <i>odd</i> ; it might also be <i>neither</i> of these
Answ	er: a)	$f(x) = x^3 - 4x$	Replace each x in the function with $-x$ and simplify.
		$f(-x) = (-x)^3 - 4(-x)$	Evaluate each term.
		$= -x^3 + 4x$	Because the lead term is negative, factor out -1.
		$= -1(x^3 - 4x)$	In the parentheses is the original $f(x)$, so
		f(-x) = -f(x)	f(x) is an odd function.
	b)	$g(x) = 2x^2 + 6x - 8$	Replace each x in the function with $-x$ and simplify.
		$g(-x) = 2(-x)^2 + 6(-x) - 8$	Evaluate each term.
		$= 2x^2 - 6x - 8$	The lead term is the same as it is for $g(x)$, so g is not odd; however, the middle terms of $g(x)$ and $g(-x)$ are different, so
		$g(-x) \neq g(x)$ and $g(-x) \neq -g(x)$ so	g(x) is neither even nor odd.
	c)	$h(x) = x^4 - 4x^2 + 3$	Replace each x in the function with $-x$ and simplify.
		$h(-x) = (-x)^4 - 4(-x)^2 + 3$	A negative value to an even power is the same as the positive value to an even power. In other words, $(-x)^2 = x^2$
		$h(-x) = x^4 - 4x^2 + 3$	This is identical to the original function, so
		h(-x) = h(x)	h(x) is an even function.

Focus Exercises

For each, use the **<u>algebraic properties</u>** to determine whether the function is even, odd, or neither.

1.
$$f(x) = \frac{-2}{3}x$$
 2. $g(x) = 3x^2 - 5$

3.
$$h(x) = \sqrt[3]{x}$$
 4. $f(x) = x^3 + x + 1$

5.
$$g(x) = 4 - x^2$$
 6. $h(x) = 5 - x^3$