Introduction to Functions: Domain and Range

Relations: Domain and Range

A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as $\{(0,2),(1,3),(2,4)\}$, or it can be infinite, such as the set of all points on a line or a curve.

The domain of a relation is the set of all (possible) x-values, and the range is the set of all y-values.

Domain: $\{0,3,6\}$
Range: $\{2,4,6\}$

Domain: $[-5,3]$
Range: $[-6,2]$

Domain: $(-\infty, \infty)^{*}$ Range: $[1, \infty)$

The domain and range are sets of numbers and we can represent each in one of several ways. In this appendix, you might come across any of these solution sets:

Words	Interval Notation	Set Builder Notation	Symbolically
all real numbers	$(-\infty, \infty)$	$\{x \mid x$ is a real number $\}$	\mathbb{R}
x is between -5 and 3, inclusive	$[-5,3]$	$\{x \mid-5 \leq x \leq 3\}$	$-5 \leq x \leq 3$
x is between -5 and 3, exclusive	$(-5,3)$	$\{x \mid-5<x<3\}$	$-5<x<3$
x is greater than or equal to -1	$[-1, \infty)$	$\{x \mid x \geq-1\}$	$x \geq-1$
x is less than 2	$(-\infty, 2)$	$\{x \mid x<2\}$	$x<2$
x is not 7	$(-\infty, 7) \cup(7, \infty)$	$\{x \mid x \neq 7\}$	$\mathbb{R}-\{7\}$

You Try It 1 For each relation, identify both the domain and the range.

Function Definition

A function is a relation such that, for every x there is only one y.
The vertical line test is a way to visually identify whether the graph of a relation is a function. If any vertical line can cross the graph in more than one place, then the graph is not a function; otherwise, it is a function.

The basic idea behind the vertical line test is that we are visually checking each and every x-value in the domain, making sure that it corresponds to only one y-value.

This relation is a function.

This relation is not a function.

This relation is not a function.

Graphs of Trigonometric Functions

These are all functions:

$f(t)=\tan (t)$

$$
f(t)=\cot (t)
$$

RESTRICTIONS ON THE DOMAIN

Some functions have natural restrictions. In particular,
(i) a denominator can never be 0 (The numerator is unaffected by this restriction.)
(ii) the radicand of a square root can never be negative. $\begin{aligned} & \text { We do not consider the option of } \\ & \text { imaginary numbers because the } \\ & x \text { - and } y \text {-axes are real number axes. }\end{aligned}$

Example 1: Identify the domain of each function.
a) $y=\sqrt{2 x+1}$
b) $y=\frac{x+2}{3 x-4}$
c) $y=x^{2}+4 x-1$

Procedure: Identify whether the function has a natural domain restriction or otherwise.

Answer:

a) The radicand cannot be negative:

$$
\begin{aligned}
2 x+1 & \geq 0 \\
2 x & \geq-1
\end{aligned}
$$

Domain: $\quad x \geq-\frac{1}{2}$
b) The denominator cannot be zero:

$$
\begin{array}{r}
3 x-4 \neq 0 \\
3 x \neq 4
\end{array}
$$

$$
\text { Domain: } \quad x \neq \frac{4}{3}
$$

c) For polynomial functions, the domain is all real numbers (unless it has a given domain restriction).

Note: For some functions, the range is not intuitive and is often found only after the function has been graphed.
$\overline{\overline{\text { You Try It } 2}}$ For each function, identify the domain. (You are not asked to find the range.)
a) $y=\frac{2 x-9}{3-6 x}$
b) $y=-x^{3}+x-2$
c) $y=\sqrt{4-5 x}$

You Try It Answers

YTI 1:
a) Domain: $-2 \leq x \leq 8$ Range: $-4 \leq y \leq 6$
d) Domain: \mathbb{R}
Range: $y \leq 5$
b) Domain: \mathbb{R}
Range: $y \geq-2$
c) Domain: \mathbb{R} Range: \mathbb{R}
e) Domain: $x \geq-5$
Range: $y \geq 0$
c) Domain: $-2 \leq x \leq 6$
Range:
$1 \leq y \leq 7$
a) Domain: $x \neq \frac{1}{2}$
b) Domain: \mathbb{R}
c) Domain: $x \leq \frac{4}{5}$

YTI 2:

Focus Exercises

Given the graph of $f(x)$, determine its domain and range.
1.

2.

3.

4.

Identify the domain of the function. Keep in mind any possible restriction the domain may have.
5. $f(x)=\sqrt{2 x-6}$
6. $h(x)=\frac{x+1}{3 x-5}$
7. $g(x)=\frac{2}{3} x-4$
8. $f(x)=\sqrt{8-4 x}$
9. $k(x)=\frac{x}{x^{2}-4}$
10. $f(x)=x^{2}+1$

