Introduction to Functions: Domain and Range

RELATIONS: DOMAIN AND RANGE

A **relation** is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as $\{(0, 2), (1, 3), (2, 4)\}$, or it can be infinite, such as the set of all points on a line or a curve.

The **domain** of a relation is the set of all (possible) *x*-values, and the **range** is the set of all *y*-values.

The domain and range are sets of numbers and we can represent each in one of several ways. In this appendix, you might come across any of these solution sets:

Words	Words Interval Notation Set Builder Notation		Symbolically
all real numbers	$(-\infty,\infty)$	$\{x \mid x \text{ is a real number }\}$	R
x is between -5 and 3, inclusive	[-5, 3]	$\{ x \mid -5 \le x \le 3 \}$	$-5 \le x \le 3$
x is between -5 and 3, exclusive	(-5, 3)	$\{ x \mid -5 < x < 3 \}$	-5 < x < 3
x is greater than or equal to -1	[-1, ∞)	$\{ x \mid x \ge -1 \}$	$x \ge -1$
x is less than 2	(-∞, 2)	$\{ x \mid x < 2 \}$	<i>x</i> < 2
x is not 7	(-∞, 7) ∪ (7,∞)	$\{ x \mid x \neq 7 \}$	R -{7}

You Try It 1 For each relation, identify both the domain and the range.

FUNCTION DEFINITION

A **function** is a relation such that, for every *x* there is only one *y*.

The *vertical line test* is a way to visually identify whether the graph of a relation is a function. If any vertical line can cross the graph in more than one place, then the graph is *not* a function; otherwise, it is a function.

The basic idea behind the vertical line test is that we are visually checking each and every *x*-value in the domain, making sure that it corresponds to only one *y*-value.

This relation is a function.

This relation is *not* a function.

This relation is *not* a function.

GRAPHS OF TRIGONOMETRIC FUNCTIONS

These are all functions:

RESTRICTIONS ON THE DOMAIN

Some functions have natural restrictions. In particular,

(i) a denominator can never be 0 (The numerator is unaffected by this restriction.)

(ii) the radicand of a square root can never be negative.We do not consider the option of
imaginary numbers because the
x- and y-axes are real number axes.**Example 1:** Identify the domain of each function.

a)
$$y = \sqrt{2x+1}$$
 b) $y = \frac{x+2}{3x-4}$ c) $y = x^2 + 4x - 1$

Procedure: Identify whether the function has a natural domain restriction or otherwise.

Answer:

a)	The radicand cannot be	b) The denominator cannot be	c) For polynomial functions,
	negative:	zero:	the domain is <u>all real</u>
			<u>numbers</u> (unless it has a
	$2x + 1 \ge 0$	$3x - 4 \neq 0$	given domain restriction).
	$2x \ge -1$	$3x \neq 4$	
D	. 1	4	Domain: IR
Don	nain: $x \ge -\overline{2}$	Domain: $x \neq \overline{3}$	

Note: For some functions, the range is not intuitive and is often found only after the function has been graphed.

You Try It 2 For each function, identify the domain. (You are not asked to find the range.)

a) $y = \frac{2x - 9}{3 - 6x}$ b) $y = -x^3 + x - 2$ c) $y = \sqrt{4 - 5x}$

You Try It Answers

YTI 1:	a)	Domain: $-2 \le x \le 8$ Range: $-4 \le y \le 6$	b)	Domain: \mathbb{R} Range: $y \ge -2$	c)	Domain: IR Range: IR
	d)	Domain: \mathbb{R} Range: $y \le 5$	e)	Domain: $x \ge -5$ Range: $y \ge 0$	c)	Domain: $-2 \le x \le 6$ Range: $1 \le y \le 7$
YTI 2:	a)	Domain: $x \neq \frac{1}{2}$	b)	Domain: IR	c)	Domain: $x \le \frac{4}{5}$

Focus Exercises

Given the graph of f(x), determine its domain and range.

Identify the domain of the function. Keep in mind any possible restriction the domain may have.

5.
$$f(x) = \sqrt{2x-6}$$
 6. $h(x) = \frac{x+1}{3x-5}$ 7. $g(x) = \frac{2}{3}x-4$

8.
$$f(x) = \sqrt{8-4x}$$
 9. $k(x) = \frac{x}{x^2-4}$ 10. $f(x) = x^2+1$