Graphing the Reciprocal Function

Division by 0

Concept		Ex	Example		
We cannot divide by 0 (zero)					
a)	$\frac{a}{0}$ is <i>undefined</i> . for all values of <i>a</i> .	a)	$\frac{4}{0}$ and $\frac{-5}{0}$ are both undefined.		
b)	If $f(x) = \frac{a}{x}$, then $f(x)$ is undefined when the value of x is 0. This means that 0 (zero) is not in the domain of $f(x)$.	b)	If $f(x) = \frac{7}{x}$, then the domain of $f(x)$ is all real numbers except 0: Domain: $\mathcal{R} - \{0\}$.		
c)	If $g(x) = \frac{a}{binomial}$, then $g(x)$ is undefined when the binomial is 0, and that value is excluded from the domain of $g(x)$.	c)	If $g(x) = \frac{-3}{x-6}$, then the domain of $g(x)$ is all real numbers except 6: Domain: $\mathcal{R} - \{6\}$.		

Group Exercise 1 Identify the domain of the given function.

- a) $f(x) = \frac{4}{x-5}$ b) $g(x) = \frac{-2}{x+4}$
- c) $h(x) = \frac{-1}{2x 7}$ d) $k(x) = \frac{1}{3x + 8}$

e)
$$f(x) = \frac{x+5}{4x-8}$$
 f) $g(x) = \frac{x-6}{2x+6}$

The Reciprocal Function

a)	$f(x) = \frac{1}{x}$ is called the <i>reciprocal function</i> .	a)	$f\left(\frac{4}{7}\right) = \frac{7}{4}$, the reciprocal of $\frac{4}{7}$
b)	The smaller the value of <i>x</i> , the larger the value of its reciprocal:	b)	$f\left(\frac{1}{1,000}\right) = 1,000$
c)	The larger the value of x , the smaller the value of its reciprocal:	c)	$f(1,000) = \frac{1}{1,000}$
d)	The reciprocal of a negative number is negative.	d)	$f\left(\frac{-1}{3}\right) = -3$

Group Exercise 2			ch. Use the values to sketch the graph of
		$f(x) = \frac{1}{x}.$	
a)	f(4) =	b) $f(1) =$	y
c)	$f\left(\frac{1}{2}\right) =$	d) $f\left(\frac{1}{3}\right) =$	
	$f\left(\frac{1}{100}\right) =$	f) $f(8) =$	
g)	<i>f</i> (-5) =	h) $f(-1) =$	86422-4-6-8
i)	$f\left(-\frac{1}{2}\right) =$	j) $f\left(\frac{-1}{3}\right) =$	
k)	$f\left(\frac{-1}{100}\right) =$	1) $f(-6) =$	

Group Exercise 3

Based on your graph of $f(x) = \frac{1}{x}$, what happens to the graph at x = 0? Explain your answer.

Group Exercise 4

Based on your graph of $f(x) = \frac{1}{x}$, draw a quick sketch of f(x) in this x-y-plane.

Group Exercise 5

Based on your quick sketch of $f(x) = \frac{1}{x}$ above, draw a quick sketch of $g(x) = \frac{2}{x}$ in this x-y-plane.

Group Exercise 6

Based on your quick sketch of $f(x) = \frac{1}{x}$ above, draw a quick sketch of $h(x) = \frac{-1}{x}$ in this *x*-*y*-plane.

Asymptotes

Based on the reciprocal function, $f(x) = \frac{1}{x}$, from the various graphs we have drawn, no points ever cross the y-axis. This is because x = 0 is not in the domain (so there can't be a y-value when x = 0).

Instead, we have an *asymptote* right along the *y*-axis. An *asymptote* is a line—usually horizontal or vertical—that acts as a guideline to a graph.

Group Exercise 7 a) For the graph of
$$f(x) = \frac{1}{x}$$
, how is the y-axis an asymptote?

- b) Is this a vertical asymptote or a horizontal asymptote?
- c) Does the graph have any other asymptotes? Explain.

y

y

y

x

х

х

Group Exercise 8

For each, identify the domain and draw a *quick sketch* of each of the following functions. Use a dotted line for any vertical asymptotes.

a)
$$f(x) = \frac{1}{x-3}$$

c)
$$f(x) = \frac{3}{x+1}$$

e)
$$f(x) = \frac{3}{x+1}$$

d)
$$f(x) = \frac{2}{x-5}$$

f)
$$f(x) = \frac{2}{x-5}$$

