Graphing the Reciprocal Function

Division by 0

Concept	Example
We cannot divide by 0 (zero)	
a) $\frac{a}{0}$ is undefined. for all values of a.	a) $\frac{4}{0}$ and $\frac{-5}{0}$ are both undefined.
b) If $f(x)=\frac{a}{x}$, then $f(x)$ is undefined when the value of x is 0 . This means that 0 (zero) is not in the domain of $f(x)$.	b) If $f(x)=\frac{7}{x}$, then the domain of $f(x)$ is all real numbers except 0 : Domain: $\mathcal{R}-\{0\}$.
c) If $g(x)=\frac{a}{\text { binomial }}$, then $g(x)$ is undefined when the binomial is 0 , and that value is excluded from the domain of $g(x)$.	c) If $g(x)=\frac{-3}{x-6}$, then the domain of $g(x)$ is all real numbers except 6 : Domain: $\mathcal{R}-\{6\}$.

$\overline{\text { Group Exercise 1 }}$ Identify the domain of the given function.
a) $f(x)=\frac{4}{x-5}$
b) $\quad g(x)=\frac{-2}{x+4}$
c) $\quad h(x)=\frac{-1}{2 x-7}$
d) $\quad k(x)=\frac{1}{3 x+8}$
e) $f(x)=\frac{x+5}{4 x-8}$
f) $g(x)=\frac{x-6}{2 x+6}$

The Reciprocal Function

a) $\quad f(x)=\frac{1}{x}$ is called the reciprocal function.
b) The smaller the value of x, the larger the value of its reciprocal:
a) $f\left(\frac{4}{7}\right)=\frac{7}{4}$, the reciprocal of $\frac{4}{7}$
b) $\quad f\left(\frac{1}{1,000}\right)=1,000$
c) The larger the value of x, the smaller the value of its reciprocal:
d) The reciprocal of a negative number is negative.
c) $f(1,000)=\frac{1}{1,000}$
d) $f\left(\frac{-1}{3}\right)=-3$
$\overline{\text { Group Exercise 2 }}$ Given $f(x)=\frac{1}{x}$, find the value of each. Use the values to sketch the graph of

$$
f(x)=\frac{1}{x}
$$

a) $f(4)=$
b) $\quad f(1)=$
c) $f\left(\frac{1}{2}\right)=$
d) $f\left(\frac{1}{3}\right)=$
e) $f\left(\frac{1}{100}\right)=$
f) $f(8)=$
g) $f(-5)=$
h) $f(-1)=$
i) $f\left(-\frac{1}{2}\right)=$
j) $f\left(\frac{-1}{3}\right)=$
k) $f\left(\frac{-1}{100}\right)=$

1) $f(-6)=$

Group Exercise 3
Based on your graph of $f(x)=\frac{1}{x}$, what happens to the graph at $x=0$?
Explain your answer.

Group Exercise 4

Based on your graph of $f(x)=\frac{1}{x}$, draw a quick sketch of $f(x)$ in this $x-y$ plane.

Group Exercise 5

Based on your quick sketch of $f(x)=\frac{1}{x}$ above, draw a quick sketch of $g(x)=\frac{2}{x}$ in this $x-y$-plane.

Group Exercise 6

Based on your quick sketch of $f(x)=\frac{1}{x}$ above, draw a quick sketch of $h(x)=\frac{-1}{x}$ in this $x-y$-plane.

Asymptotes

Based on the reciprocal function, $f(x)=\frac{1}{x}$, from the various graphs we have drawn, no points ever cross the y-axis. This is because $x=0$ is not in the domain (so there can't be a y-value when $x=0$).

Instead, we have an asymptote right along the y-axis. An asymptote is a line-usually horizontal or vertical-that acts as a guideline to a graph.

Group Exercise 7
a) For the graph of $f(x)=\frac{1}{x}$, how is the y-axis an asymptote?
b) Is this a vertical asymptote or a horizontal asymptote?
c) Does the graph have any other asymptotes? Explain.

Group Exercise 8 For each, identify the domain and draw a quick sketch of each of the following functions. Use a dotted line for any vertical asymptotes.
a) $f(x)=\frac{1}{x-3}$

c) $f(x)=\frac{3}{x+1}$

e) $f(x)=\frac{3}{x+1}$

b) $f(x)=\frac{1}{x+4}$

d) $f(x)=\frac{2}{x-5}$

f) $f(x)=\frac{2}{x-5}$

