Multiplying and Dividing Radicals

MULTIPLICATION

Let's take a closer look at the second part of the Product Rule of Radicals:

The Product Rule of Radicals As long as both $x \ge 0$ and $y \ge 0$, then 2. $\sqrt{x} \cdot \sqrt{y} = \sqrt{x \cdot y}$

This tells us that the product of two radicals can be written as a single radical. We can see this work with the following examples:

Example A1: $\sqrt{4} \cdot \sqrt{9} = 2 \cdot 3 = 6$

Example A₂: $\sqrt{4 \cdot 9} = \sqrt{36} = 6$

Example 1:	Multiply and simpl	blify.	
a) $\sqrt{3} \cdot \sqrt{5}$	b)	$\sqrt{6} \cdot \sqrt{10}$	c) $(\sqrt{5})^2$
Procedure:	Use the Product Ru	ule of Radicals to multiply. Si	mplify the result, if possible.
Answer:			
a) $\sqrt{3} \cdot \sqrt{5}$	b)	$\sqrt{6} \cdot \sqrt{10}$	c) $(\sqrt{5})^2$
$= \sqrt{3 \cdot 5}$		$=\sqrt{6\cdot 10}$	$=\sqrt{5}\cdot\sqrt{5}$
$= \sqrt{15}$ Cann	ot simplify.	$= \sqrt{60}$ Simplify.	$=\sqrt{5\cdot 5}$
		$=\sqrt{4\cdot 15}$	$=\sqrt{25}$ Simplify.
		$= \sqrt{4} \cdot \sqrt{15}$	= 5
		$= 2\sqrt{15}$	This is just the original radicand.

Note: As demonstrated in Example 1c), the square of a square root radical is simply the whole number radicand. This means that no work is required to show that $(\sqrt{5})^2 = 5$.

You Try It 1 Multiply and simplify. Use Example 1 as a guide. $\sqrt{15} \cdot \sqrt{2}$ b) $\sqrt{2} \cdot \sqrt{50}$ a) **Perfect Squares** (You make the list.) $\sqrt{2} \cdot \sqrt{10}$ d) $\sqrt{5} \cdot \sqrt{12}$ c) $(\sqrt{7})^2$ $(\sqrt{13})^2$

Consider the product $\sqrt{15} \cdot \sqrt{35}$. We can multiply directly to get $\sqrt{15 \cdot 35} = \sqrt{525}$. It might be difficult to tell, but $\sqrt{525}$ does simplify:

f)

$$\sqrt{525} = \sqrt{25 \cdot 21} = \sqrt{25} \cdot \sqrt{21} = 5\sqrt{21}$$

Instead of multiplying directly, and creating a rather large radicand, we have another option. Before multiplying the radicals, we can find the prime factorization of each radical and then multiply:

 $\sqrt{15} \cdot \sqrt{35}$ Write the prime factorization of each radicand. $=\sqrt{3\cdot 5}\cdot\sqrt{7\cdot 5}$ Use the product rule to multiply the radicals in their prime factored form. $=\sqrt{3\cdot5\cdot7\cdot5}$ Identify duplicate pairs of prime factors, $5 \cdot 5$, and reorder the prime factorization. $=\sqrt{(5\cdot 5)\cdot (3\cdot 7)}$ Multiply within the groups. $=\sqrt{25\cdot 21}$ Separate the radicals and simplify. $=\sqrt{25}\cdot\sqrt{21}$ This was more steps than is actually necessary, but $= 5\sqrt{21}$ it's best to show you all of the work than not enough.

e)

You	Try It 2	Multiply and simplify.	Use	the discussion above as a guide.	
a)	$\sqrt{14} \cdot \sqrt{21}$		b)	$\sqrt{6} \cdot \sqrt{50}$	Perfect Squares (You make the list.)
c)	$\sqrt{18} \cdot \sqrt{8}$		d)	$\sqrt{12} \cdot \sqrt{75}$	

THE QUOTIENT RULE OF RADICALS

The **Quotient Rule of Radicals** is similar to the Product Rule of Radicals; it uses division instead of multiplication::

The Quotient Rule of Radicals
1.
$$\frac{\sqrt{x}}{\sqrt{y}} = \sqrt{\frac{x}{y}}$$
 for $y \neq 0$
and
2. $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$ for $y \neq 0$

Part 1 of this quotient rule allows us to write a fraction of radicals as a single radical.

For example,
$$\frac{\sqrt{18}}{\sqrt{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3$$

and $\frac{\sqrt{20}}{\sqrt{2}} = \sqrt{\frac{20}{2}} = \sqrt{10}$

Example 2:	Use part 1 of the Quotient Rule of Radicals to simplify the following expressions.					
	a) $\frac{\sqrt{20}}{\sqrt{5}}$ b) $\frac{\sqrt{18}}{\sqrt{3}}$ c) $\frac{\sqrt{60}}{\sqrt{5}}$					
Procedure:	Write each expression as a single fraction within a radical, then simplify, if possible.					
Answer:	a) $\frac{\sqrt{20}}{\sqrt{5}} = \sqrt{\frac{20}{5}} = \sqrt{4} = 2$					
	b) $\frac{\sqrt{18}}{\sqrt{3}} = \sqrt{\frac{18}{3}} = \sqrt{6}$ which can't be simplified further					
	c) $\frac{\sqrt{60}}{\sqrt{5}} = \sqrt{\frac{60}{5}} = \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$					

Use part 1 of the Quotient Rule of Radicals to simplify the following expressions. Use Example 2 as a guide.

a)
$$\frac{\sqrt{45}}{\sqrt{5}}$$
 b) $\frac{\sqrt{75}}{\sqrt{3}}$

c)
$$\frac{\sqrt{21}}{\sqrt{3}}$$
 d) $\frac{\sqrt{56}}{\sqrt{7}}$

IF THE DENOMINATOR IS A PERFECT SQUARE ...

Part 2 of the quotient rule allows us to separate the square root of a fraction, such as $\sqrt{\frac{10}{4}}$, into two radicals, one divided by the other:

$$\sqrt{\frac{10}{4}} = \frac{\sqrt{10}}{\sqrt{4}} = \frac{\sqrt{10}}{2}$$

Caution:	$\frac{\sqrt{10}}{2}$ cannot simplify any further. The 10 and 2 cannot combine directly
	because 2 is not within a radical.

You Try It 3

Example 3:	Use part 2 of the Quotient Rule of Radicals to simplify each expression.						
	a) $\sqrt{\frac{25}{4}}$ b) $\sqrt{\frac{26}{9}}$	c) $\sqrt{\frac{30}{25}}$					
Procedure:	Separate each expression into two radicals.	Simplify if possible.					
Answer:							
a) $\sqrt{\frac{25}{4}}$	b) $\sqrt{\frac{26}{9}}$	c) $\sqrt{\frac{30}{25}}$					
$= \frac{\sqrt{25}}{\sqrt{4}}$	$= \frac{\sqrt{26}}{\sqrt{9}}$	$= \frac{\sqrt{30}}{\sqrt{25}}$					
$= \frac{5}{2}$	$=\frac{\sqrt{26}}{3}$	$=\frac{\sqrt{30}}{5}$					

You Try It 4

Use part 2 of the Quotient Rule of Radicals to simplify each expression. Use Example 3 as a guide.

a)	$\sqrt{\frac{49}{9}}$	b)	$\sqrt{\frac{16}{81}}$
----	-----------------------	----	------------------------

c)
$$\sqrt{\frac{15}{64}}$$
 d) $\sqrt{\frac{21}{9}}$

You Try It Answers

You Try It 1	a)	$\sqrt{30}$	b)	10	c)	2√5	d)	$2\sqrt{15}$
	e)	7	f)	13				
You Try It 2	a)	7√6	b)	10√3	c)	12	d)	30
You Try It 3	a)	3	b)	5	c)	$\sqrt{7}$	d)	$2\sqrt{2}$
You Try It 4	a)	$\frac{7}{3}$	b)	$\frac{4}{9}$	c)	$\frac{\sqrt{15}}{8}$	d)	$\frac{\sqrt{21}}{3}$

Focus Exercises

Use the Product Rule of Radicals to write each as one radical. Simplify, if possible.

1.	$\sqrt{5} \cdot \sqrt{3}$	2.	$\sqrt{11} \cdot \sqrt{5}$
3.	$\sqrt{18} \cdot \sqrt{2}$	4.	$\sqrt{8} \cdot \sqrt{2}$
5.	$\left(\sqrt{12}\right)^2$	6.	$\left(\sqrt{18}\right)^2$
7.	$\sqrt{20} \cdot \sqrt{2}$	8.	$\sqrt{15} \cdot \sqrt{3}$
9.	$\sqrt{7} \cdot \sqrt{14}$	10.	$\sqrt{10} \cdot \sqrt{8}$
11.	$\sqrt{6} \cdot \sqrt{42}$	12.	$\sqrt{10} \cdot \sqrt{20}$

Use the Quotient Rules of Radicals to simplify the expression completely.

