Multiplying and Dividing Radicals

MULTIPLICATION

Let's take a closer look at the second part of the Product Rule of Radicals:

The Product Rule of Radicals

As long as both $x \geq 0$ and $y \geq 0$, then
2. $\sqrt{x} \cdot \sqrt{y}=\sqrt{x \cdot y}$

This tells us that the product of two radicals can be written as a single radical. We can see this work with the following examples:

Example $\mathbf{A}_{\mathbf{1}}: \sqrt{4} \cdot \sqrt{9}=2 \cdot 3=6$
Example $\mathbf{A}_{2}: \sqrt{4 \cdot 9}=\sqrt{36}=6$

Example 1: Multiply and simplify.

a) $\sqrt{3} \cdot \sqrt{5}$
b) $\sqrt{6} \cdot \sqrt{10}$
c) $(\sqrt{5})^{2}$

Procedure: Use the Product Rule of Radicals to multiply. Simplify the result, if possible.
Answer:
a) $\sqrt{3} \cdot \sqrt{5}$
b) $\quad \sqrt{6} \cdot \sqrt{10}$
c) $\quad(\sqrt{5})^{2}$
$=\sqrt{6 \cdot 10}$
$=\sqrt{5} \cdot \sqrt{5}$
$=\sqrt{3 \cdot 5}$
$=\sqrt{60}$
Simplify.
$=\sqrt{5 \cdot 5}$
$=\sqrt{4 \cdot 15}$
$=\sqrt{25} \quad$ Simplify.
$=\sqrt{4} \cdot \sqrt{15}$
$=5$
$=2 \sqrt{15}$
This is just the original radicand.

Note: As demonstrated in Example 1c), the square of a square root radical is simply the whole number radicand. This means that no work is required to show that $(\sqrt{5})^{2}=5$.

You Try It 1 Multiply and simplify. Use Example 1 as a guide.
a) $\sqrt{15} \cdot \sqrt{2}$
b) $\sqrt{2} \cdot \sqrt{50}$
c) $\sqrt{2} \cdot \sqrt{10}$
d) $\sqrt{5} \cdot \sqrt{12}$
e) $(\sqrt{7})^{2}$
f) $(\sqrt{13})^{2}$

Perfect Squares
(You make the list.)

Consider the product $\sqrt{15} \cdot \sqrt{35}$. We can multiply directly to get $\sqrt{15 \cdot 35}=\sqrt{525}$. It might be difficult to tell, but $\sqrt{525}$ does simplify:

$$
\sqrt{525}=\sqrt{25 \cdot 21}=\sqrt{25} \cdot \sqrt{21}=5 \sqrt{21}
$$

Instead of multiplying directly, and creating a rather large radicand, we have another option. Before multiplying the radicals, we can find the prime factorization of each radical and then multiply:

	$\sqrt{15} \cdot \sqrt{35}$		Write the prime factorization of each radicand.
$=$	$\sqrt{3 \cdot 5} \cdot \sqrt{7 \cdot 5}$		Use the product rule to multiply the radicals in their prime factored form.
$=$	$\sqrt{3 \cdot 5 \cdot 7 \cdot 5}$		Identify duplicate pairs of prime factors, $5 \cdot 5$, and reorder the prime factorization.
$=$	$\sqrt{(5 \cdot 5) \cdot(3 \cdot 7)}$		Multiply within the groups.
$=$	$\sqrt{25 \cdot 21}$		Separate the radicals and simplify.
$=$	$\sqrt{25} \cdot \sqrt{21}$		
$=$			

a) $\sqrt{14} \cdot \sqrt{21}$
b) $\sqrt{6} \cdot \sqrt{50}$
c) $\quad \sqrt{18} \cdot \sqrt{8}$
d) $\sqrt{12} \cdot \sqrt{75}$

Perfect Squares
(You make the list.)

The Quotient Rule of Radicals

The Quotient Rule of Radicals is similar to the Product Rule of Radicals; it uses division instead of multiplication::

The Quotient Rule of Radicals

1. $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$ for $\mathrm{y} \neq 0$
and
2. $\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}} \quad$ for $\mathrm{y} \neq 0$

Part 1 of this quotient rule allows us to write a fraction of radicals as a single radical.
For example, $\frac{\sqrt{18}}{\sqrt{2}}=\sqrt{\frac{18}{2}}=\sqrt{9}=3$
and $\frac{\sqrt{20}}{\sqrt{2}}=\sqrt{\frac{20}{2}}=\sqrt{10}$

Example 2: Use part 1 of the Quotient Rule of Radicals to simplify the following expressions.
a) $\frac{\sqrt{20}}{\sqrt{5}}$
b) $\frac{\sqrt{18}}{\sqrt{3}}$
c) $\frac{\sqrt{60}}{\sqrt{5}}$

Procedure: Write each expression as a single fraction within a radical, then simplify, if possible.

Answer:
a) $\frac{\sqrt{20}}{\sqrt{5}}=\sqrt{\frac{20}{5}}=\sqrt{4}=2$
b) $\frac{\sqrt{18}}{\sqrt{3}}=\sqrt{\frac{18}{3}}=\sqrt{6}$ which can't be simplified further
c) $\frac{\sqrt{60}}{\sqrt{5}}=\sqrt{\frac{60}{5}}=\sqrt{12}=\sqrt{4 \cdot 3}=\sqrt{4} \cdot \sqrt{3}=2 \sqrt{3}$

You Try It 3 Use part 1 of the Quotient Rule of Radicals to simplify the following expressions. Use Example 2 as a guide.
a) $\frac{\sqrt{45}}{\sqrt{5}}$
b) $\frac{\sqrt{75}}{\sqrt{3}}$
c) $\frac{\sqrt{21}}{\sqrt{3}}$
d) $\frac{\sqrt{56}}{\sqrt{7}}$

If The Denominator is a Perfect Square ...

Part 2 of the quotient rule allows us to separate the square root of a fraction, such as $\sqrt{\frac{10}{4}}$, into two radicals, one divided by the other:

$$
\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{\sqrt{4}}=\frac{\sqrt{10}}{2}
$$

Caution:	$\frac{\sqrt{10}}{2}$ cannot simplify any further. The 10 and 2 cannot combine directly
because 2 is not within a radical.	

Example 3: Use part 2 of the Quotient Rule of Radicals to simplify each expression.
a) $\sqrt{\frac{25}{4}}$
b) $\sqrt{\frac{26}{9}}$
c) $\sqrt{\frac{30}{25}}$

Procedure: Separate each expression into two radicals. Simplify if possible.
Answer:
a) $\sqrt{\frac{25}{4}}$
b) $\quad \sqrt{\frac{26}{9}}$
c) $\sqrt{\frac{30}{25}}$
$=\frac{\sqrt{25}}{\sqrt{4}}$
$=\frac{\sqrt{26}}{\sqrt{9}}$
$=\frac{\sqrt{30}}{\sqrt{25}}$
$=\frac{5}{2}$
$=\frac{\sqrt{26}}{3}$
$=\frac{\sqrt{30}}{5}$
$\overline{\text { You Try It 4 }}$ Use part 2 of the Quotient Rule of Radicals to simplify each expression. Use Example 3 as a guide.
a) $\sqrt{\frac{49}{9}}$
b) $\sqrt{\frac{16}{81}}$
c) $\sqrt{\frac{15}{64}}$
d) $\sqrt{\frac{21}{9}}$

You Try It Answers

You Try It 1
a) $\sqrt{30}$
b) 10
c) $2 \sqrt{5}$
d) $2 \sqrt{15}$
e) 7
f) 13
d) 30

You Try It 2
a) $7 \sqrt{6}$
b) $10 \sqrt{3}$
c) 12

You Try It 4
a) 3
b) 5
c) $\sqrt{7}$
d) $2 \sqrt{2}$

You Try It 3
7
b) $\frac{4}{9}$
c) $\frac{\sqrt{15}}{8}$
d) $\frac{\sqrt{21}}{3}$

Focus Exercises

Use the Product Rule of Radicals to write each as one radical. Simplify, if possible.

1. $\sqrt{5} \cdot \sqrt{3}$
2. $\sqrt{11} \cdot \sqrt{5}$
3. $\sqrt{18} \cdot \sqrt{2}$
4. $\sqrt{8} \cdot \sqrt{2}$
5. $(\sqrt{12})^{2}$
6. $(\sqrt{18})^{2}$
7. $\sqrt{20} \cdot \sqrt{2}$
8. $\sqrt{15} \cdot \sqrt{3}$
9. $\sqrt{7} \cdot \sqrt{14}$
10. $\sqrt{10} \cdot \sqrt{8}$
11. $\sqrt{6} \cdot \sqrt{42}$
12. $\sqrt{10} \cdot \sqrt{20}$

Use the Quotient Rules of Radicals to simplify the expression completely.
13. $\frac{\sqrt{90}}{\sqrt{10}}$
14. $\frac{\sqrt{75}}{\sqrt{3}}$
15. $\sqrt{\frac{1}{36}}$
16. $\sqrt{\frac{81}{100}}$
17. $\sqrt{\frac{35}{36}}$
18. $\sqrt{\frac{21}{25}}$
19. $\sqrt{\frac{45}{81}}$
20. $\sqrt{\frac{24}{100}}$

