Multiplying Binomials

MULTIPLYING BINOMIALS, THE FOIL METHOD

- 1. A binomial is two terms, added (or subtracted) together. Examples of binomials are
- a) 3x + 7 b) $5w^2 + 1$ c) 4 3y d) 2x 9y
- **2.** The **product** (*multiplication*) of two binomials is written with parentheses around each binomial. These are all products of two binomials:
- a) (3x+7)(x-4) b) $(5w^2+1)(2w+3)$ c) (4-3y)(5-y) d) (2x-9y)(2x-9y)
- **3.** To multiply two binomials, we **distribute** the terms of the first binomial to the terms of the second binomial, creating **four** products added (or subtracted) together. These four terms are called a **quadrinomial**. For example:
- $(5w^2 + 1)(2w + 3)$ (3x+7)(x-4)b) a) $= 3x^2 - 12x + 7x - 28$ $= 10w^3 + 15w^2 + 2w + 3$ 1 2 3 4 1 2 3 4 (4 - 3y)(5 - y)d) (2x+9y)(2x-9y)c) $= 2x^2 - 18xy + 18xy - 81y^2$ $= 20 - 4y - 15y + 3y^2$ 2 3 4 1 1 2 3 4
- **4.** Often (but not always), two of those terms are **like terms** (have the same variables and exponents) and can be combined. Usually it is the middle two terms of the quadrinomial. When combined, there are often three terms remaining, a **trinomial**. Sometimes, the like terms are opposites and add to 0 (zero) and only two terms remain, a binomial:
- a) (3x + 7)(x 4) $= 3x^2 - 12x + 7x - 28$ $= 3x^2 - 5x - 28$ (trinomial) c) (4 - 3y)(5 - y) $= 20 - 4y - 15y + 3y^2$ b) $(5w^2 + 1)(2w + 3)$ $= 10w^3 + 15w^2 + 2w + 3$ (no like terms; still a quadrinomial) d) (2x + 9y)(2x - 9y) $= 2x^2 - 18xy + 18xy - 81y^2$
 - $= 20 19y + 3y^2$ (trinomial) $= 2x^2 81y^2$ (binomial)

5. One technique for multiplying binomials is called the FOIL method. It is a form of *distribution* that gives names to the four products, as described below. When multiplying two binomials, such as (a + b)(c + d), there are four pairs of terms in the following positions:

Pair of terms	Position	Represented by	
• <i>a</i> and <i>c</i>	First terms in each binomial When we distribute, $a \cdot c$ is called the First product (or <i>product of the Firsts</i>).	F	\mathbf{F} $(a + b)(c + d)$
• <i>a</i> and <i>d</i>	the outermost, or Outer , terms in the entire product When we distribute, $a \cdot d$ is called the O uter product.	0	\mathbf{O} $(\boldsymbol{a} + \boldsymbol{b})(\boldsymbol{c} + \boldsymbol{d})$
• <i>b</i> and <i>c</i>	the innermost, or Inner , terms in the entire product When we distribute, $b \cdot c$ is called the Inner product.	Ι	[a + b)(c + d)
• <i>b</i> and <i>d</i>	the Last terms in each binomial When we distribute, $b \cdot d$ is called the Last product.	L	$\begin{bmatrix} \mathbf{L} \\ \mathbf{a} \\ (a + \mathbf{b})(c + \mathbf{d}) \end{bmatrix}$

For example, in multiplying (2x + 3)(4x - 5), we get four initial products. Based on the FOIL method, those products are:

	\mathbf{F}		0		Ι		L
	First Product		Outer Product		Inner Product		Last Product
	$2x \cdot 4x = 8x^2$		$2x \cdot (-5) = 10x$		$3 \cdot 4x = 12x$		$3 \cdot (-5) = -15$
=	$8x^{2}$	_	10 <i>x</i>	+	12x	_	15
=	$8x^2 + 2x - 1$	5					

Group Exercise 1Use the FOIL method to multiply these binomial products. Simplify if
possible.

a) (v+5)(3v+2) b) $(2y^2-3)(6y-5)$

c)
$$(x-5y)(3x+4y)$$
 d) $(4+5x)(4-5x)$

Multiplying Binomials

6. If the Outer and Inner products are like terms, then they can be combined, making the FOIL method more like F + (O + I) + L. When the sum of O and I are done mentally, this becomes a one-step process.

For example, to multiply (3x + 1)(7x + 4), we can think of it as

F + (**O** + **I**) + **L** = $21x^2$ + (12x + 7x) + 4 ← This step can be done mentally. = $21x^2$ + 19x + 4

Group Exercise 2 Practice using the **FOIL** method along with the one-step technique to multiply and simplify.

a) (2k+5)(k-6) b) (2x+3)(4x+1)

c)
$$(3+4x)(3+4x)$$
 d) $(5c+1)(5c-1)$

SQUARING A BINOMIAL

7. To square a binomial, such as $(2x + 5)^2$, one option is to write it as the product of the same binomial:

 $(2x+5)^2 = (2x+5)(2x+5)$. Using the **FOIL** method, the product is

F O I L = $4x^2 + 10x + 10x + 25$ = $4x^2 + 20x + 25$

Because the Outer and Inner products are identical, their sum is just twice the Outer product:

F $2 \cdot \mathbf{O}$ **L** = $4x^2 + 2 \cdot (10x) + 25$ = $4x^2 + 20x + 25$ In general, the square of a binomial fits one of these patterns:

	The S	quare of a Binomi	al	
1. (<i>a</i> +	$(b)^2 = a^2 + 2ab + b^2$	2. ($(a - b)^2 = a^2 - b^2$	$2ab + b^2$
Example 1:	Multiply these squared bin	iomials.		
	a) $(x + 7)^2$	b) $(3 - 4x)^2$	c)	$(2x^2 + 5)^2$
Procedure:	Multiply directly using F	$+2 \cdot 0 + L$		
Answer:	a) $x^2 + 14x + 49$	b) 9 – 24 <i>x</i> +	16 <i>x</i> ² c)	$4x^4 + 20x^2 + 25$
Caution:	One common mistake the outer production $A^{2} + 14\lambda + 49$	in using this one-sto	ep technique is for	rgetting to

trinomial. Another common mistake is to square the first and last terms but forget to find the Outer product. This incorrectly leads to the resulting product having no middle term.

Group Exercise 3 Multiply these perfect square binomials and simplify.

a) $(x + 8)^2$ b) $(4w - 9)^2$

c)
$$(5 + 4y)^2$$
 d) $(6x - 2y)^2$

CONJUGATES

8. Two binomials are conjugates if their *first terms are exactly the same* but their <u>second terms are opposites</u>, as in (a + b) and (a - b). Conjugates always come in pairs. For example, (x + 3) is not a conjugate without (x - 3).

a)	(3y - 5) and $(3y + 5)$	b)	(2+7x) and $(2-7x)$	c)	(6x - 5y) and $(6x + 5y)$
	are conjugates		are conjugates		are conjugates

9. When multiplying conjugates using the **FOIL** method, the **O**uter and **I**nner terms are always opposites and combine to 0, so <u>the product of a pair of conjugates is always the difference of squares</u>:

$$(a + b)(a - b) = a^2 - b^2$$

For example,

a)	(x-3)(x+3)	b)		(2+5x)(2-5x)
	$= x^2 + 3x - 3x - 9$	← This step may be done mentally →	=	$4 - 10x + 10x - 25x^2$
	$= x^2 + 0x - 9$	← This step may be done mentally →	=	$4 + 0x - 25x^2$
	$= x^2 - 9$		=	$4 - 25x^2$

Example 2:	Identify the conjugate of the given binomial and then multiply the pair of conjugates.				
	a) $(2r-3)$	b) $(4x + y)$			
Procedure:	the same first term but the opposite es is always the difference of squares.				
Answer:					
a) Conjugat	e is (2r + 3)	b) Conjugate is $(4x - y)$			
(2r-3)(2r-	2r + 3)	(4x - y)(4x + y)			
$a^2 - b^2$	• This step may be done mentally \rightarrow	$a^2 - b^2$			
$= (2r)^2 - (2r)^2$	(3) ² \leftarrow This step may be done mentally \rightarrow	$= (4x)^2 - (y)^2$			
$= 4r^2 - 9$		$= 16x^2 - y^2$			

Group Exercise 3Identify the conjugate of the given binomial and then multiply the pair of
conjugates.

a)
$$(7x - 8)$$
 b) $(4w + 9)$

c)
$$(10m + p)$$
 d) $(1 - 6x)$

Focus Exercises

Multiply and simplify.					
1.	(2x - 3)(3x + 8)	2.	(5y - 6)(3y - 4)		
3.	(3 + 4u)(4 - 3u)	4.	(7m - 10p)(5m + 3p)		
5.	$(x + 7)^2$	6.	$(1 - 8w)^2$		

7. $(5y - 3)^2$ **8.** $(3r + 4p)^2$

Identify the conjugate of the given binomial and then multiply the pair of conjugates.

9. (x + 5) **10.** (6 - y)

11. (3r - 8) **12.** (9p + 10)