Simplifying Radicals

THE RADICAND

We know that 5² (5 squared) is 25, so 25 is called a perfect square number, or just *perfect square*. We also know that a square root of 25 is 5, written as $\sqrt{25} = 5$.

The square root symbol, $\sqrt{}$, is called a **radical**, and the number within a radical is called the **radicand**.

So, in $\sqrt{25}$, the radicand is 25.

Whenever the radicand is a perfect square, such as 49, 16, 100, or 1, the resulting value is a whole number:

$$\sqrt{49} = 7$$
, $\sqrt{16} = 4$, $\sqrt{100} = 10$, and $\sqrt{1} = 1$

Many radicands are not prefect squares and their square root is an irrational number. For example,

 $\sqrt{12} \approx 3.4641$. When we square 3.4641 we get a number very close to 12, but not exactly 12:

$$(3.4641)^2 = 11.99998881$$

In other words, there is no exact value for $\sqrt{12}$. Instead, we want to simplify $\sqrt{12}$ as best possible. This technique requires the **Product Rule of Radicals**.

SIMPLIFYING RADICALS

The Product Rule of RadicalsAs long as both
$$x \ge 0$$
 and $y \ge 0$, then1. $\sqrt{x \cdot y} = \sqrt{x} \cdot \sqrt{y}$ 2. $\sqrt{x} \cdot \sqrt{y} = \sqrt{x \cdot y}$

Part 1 of the Product Rule of Radicals is used to simplify radicals by <u>extracting a prefect square factor</u> from the radicand—if there is any. For example,

$$\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \cdot \sqrt{3}$$
 or just $2\sqrt{3}$

In this case, $2\sqrt{3}$, 2 is the *integer coefficient*.

Note: we cannot simplify a square root if it has no is a perfect square factors.

A radical expression might already have an integer coefficient before it is simplified; that coefficient is included in the final product. For example,

$$5\sqrt{12} = 5\sqrt{4 \cdot 3} = 5 \cdot \sqrt{4} \cdot \sqrt{3} = 5 \cdot 2 \cdot \sqrt{3} = 10\sqrt{3}$$

Example 1:	Simplify each square root radical, if possible.					
	a) $\sqrt{24}$ b) $\sqrt{45}$ c) $7\sqrt{50}$ d) $\sqrt{30}$					
Procedure:	All of these can be factored in more than one way, but only one factorization will lead to a simplified radical. Look for perfect square factors for each.					
Answer:	a) $\sqrt{24}$ b) $\sqrt{45}$					
	$= \sqrt{4 \cdot 6} \qquad \qquad = \sqrt{9 \cdot 5}$					
	$= \sqrt{4} \cdot \sqrt{6} \qquad \qquad = \sqrt{9} \cdot \sqrt{5}$					
	$= 2 \cdot \sqrt{6} \text{ or just } 2\sqrt{6} \qquad = 3\sqrt{5}$					
	1 $\sqrt{20}$ $\sqrt{20}$					
	c) $7\sqrt{50}$ d) $\sqrt{30}$ cannot be simplified					
	= $7 \cdot \sqrt{25 \cdot 2}$ because 30 has no perfect					
	= $7 \cdot \sqrt{25} \cdot \sqrt{2}$ square factors.					
	$= 7 \cdot 5\sqrt{2}$					
	$= 35\sqrt{2}$					

Yo	ou Try It 1	1.	possible. If the radicand has n (For your assistance, a list of e 1 as a guide.	1 1
a)	$\sqrt{27}$	b)	$\sqrt{28}$	Perfect Squares:
c)	$\sqrt{42}$	d)	<u>√90</u>	1 4 9 16 25 36 49
e)	5\sqrt{18}	f)	$\frac{1}{2}\sqrt{20}$	64 81 100

Sometimes, a radical can simplify more than just once. For example, $\sqrt{72}$ can first use 9.8 to simplify, but the radicand can be simplified further:

$$\sqrt{72} = \sqrt{9 \cdot 8} = 3\sqrt{8} = 3\sqrt{4 \cdot 2} = 3 \cdot 2 \cdot \sqrt{2} = 6\sqrt{2}$$

You Try It 2 Simplify each radical expression. Use the discussion above as a guide.

a) $\sqrt{32}$ b) $\sqrt{162}$

Perfect Squares (You make the list.)

c) $\sqrt{80}$

d) $\sqrt{360}$

You Try It Answers

You Try It 1	a)	3√3	b)	$2\sqrt{7}$	c)	cannot be simplified	d)	3√10
	e)	15√2	f)	$\sqrt{5}$				
You Try It 2	a)	$4\sqrt{2}$	b)	9√2		c) $4\sqrt{5}$	d)	6√10

Focus Exercises

Simplify the following square roots, if possible. If the radicand has no perfect square factor, then write "cannot be simplified."

1.	$\sqrt{45}$	2.	$\sqrt{63}$
3.	$\sqrt{40}$	4.	$\sqrt{54}$
5.	$\sqrt{200}$	6.	√490
7.	10√8	8.	7√12
9.	$4\sqrt{18}$	10.	2√ <u>50</u>
11.	5√300	12.	3√500