Simplifying Radicals

The Radicand

We know that 5^{2} (5 squared) is 25 , so 25 is called a perfect square number, or just perfect square. We also know that a square root of 25 is 5 , written as $\sqrt{25}=5$.

The square root symbol, $\sqrt{ }$, is called a radical, and the number within a radical is called the radicand.

So, in $\sqrt{25}$, the radicand is 25 .

Whenever the radicand is a perfect square, such as $49,16,100$, or 1 , the resulting value is a whole number:

$$
\sqrt{49}=7, \quad \sqrt{16}=4, \quad \sqrt{100}=10, \quad \text { and } \quad \sqrt{1}=1
$$

Many radicands are not prefect squares and their square root is an irrational number. For example,
$\sqrt{12} \approx 3.4641$. When we square 3.4641 we get a number very close to 12 , but not exactly 12 :

$$
(3.4641)^{2}=11.99998881
$$

In other words, there is no exact value for $\sqrt{12}$. Instead, we want to simplify $\sqrt{12}$ as best possible. This technique requires the Product Rule of Radicals.

Simplifying Radicals

The Product Rule of Radicals

As long as both $x \geq 0$ and $y \geq 0$, then

1. $\quad \sqrt{x \cdot y}=\sqrt{x} \cdot \sqrt{y}$
2. $\sqrt{x} \cdot \sqrt{y}=\sqrt{x \cdot y}$

Part 1 of the Product Rule of Radicals is used to simplify radicals by extracting a prefect square factor from the radicand-if there is any. For example,

$$
\sqrt{12}=\sqrt{4 \cdot 3}=\sqrt{4} \cdot \sqrt{3}=2 \cdot \sqrt{3} \text { or just } 2 \sqrt{3}
$$

In this case, $2 \sqrt{3}, 2$ is the integer coefficient.

Note: we cannot simplify a square root if it has no is a perfect square factors.

A radical expression might already have an integer coefficient before it is simplified; that coefficient is included in the final product. For example,

$$
5 \sqrt{12}=5 \sqrt{4 \cdot 3}=5 \cdot \sqrt{4} \cdot \sqrt{3}=5 \cdot 2 \cdot \sqrt{3}=10 \sqrt{3}
$$

Example 1: \quad Simplify each square root radical, if possible.
a) $\sqrt{24}$
b) $\sqrt{45}$
c) $7 \sqrt{50}$
d) $\sqrt{30}$

Procedure: All of these can be factored in more than one way, but only one factorization will lead to a simplified radical. Look for perfect square factors for each.

Answer:
a) $\sqrt{24}$
b) $\sqrt{45}$
$=\sqrt{4 \cdot 6}$
$=\sqrt{9 \cdot 5}$
$=\sqrt{4} \cdot \sqrt{6}$
$=\sqrt{9} \cdot \sqrt{5}$
$=2 \cdot \sqrt{6}$ or just $2 \sqrt{6}$
$=3 \sqrt{5}$
c) $7 \sqrt{50}$
d) $\sqrt{30}$ cannot be simplified
$=7 \cdot \sqrt{25 \cdot 2}$
$=7 \cdot \sqrt{25} \cdot \sqrt{2}$ because 30 has no perfect square factors.
$=7 \cdot 5 \sqrt{2}$
$=35 \sqrt{2}$

You Try It 1 Simplify the following, if possible. If the radicand has no perfect square factor, write cannot be simplified. (For your assistance, a list of perfect squares is shown at the right.) Use Example 1 as a guide.
a) $\sqrt{27}$
b) $\sqrt{28}$

Perfect Squares:

1
4
9
c) $\sqrt{42}$
d) $\sqrt{90}$

16
25 36
49
64
81
e) $5 \sqrt{18}$
f) $\frac{1}{2} \sqrt{20}$

100

Sometimes, a radical can simplify more than just once. For example, $\sqrt{72}$ can first use $9 \cdot 8$ to simplify, but the radicand can be simplified further:

$$
\sqrt{72}=\sqrt{9 \cdot 8}=3 \sqrt{8}=3 \sqrt{4 \cdot 2}=3 \cdot 2 \cdot \sqrt{2}=6 \sqrt{2}
$$

You Try It 2 \quad Simplify each radical expression. Use the discussion above as a guide.
a) $\sqrt{32}$
b) $\sqrt{162}$
c) $\sqrt{80}$
d) $\sqrt{360}$

Perfect Squares
(You make the list.)

You Try It Answers

You Try It 1
a) $3 \sqrt{3}$
b) $2 \sqrt{7}$
c) cannot be simplified
d) $3 \sqrt{10}$
e) $15 \sqrt{2}$
f) $\sqrt{5}$

You Try It 2
a) $4 \sqrt{2}$
b) $9 \sqrt{2}$
c) $4 \sqrt{5}$
d) $6 \sqrt{10}$

Focus Exercises

Simplify the following square roots, if possible. If the radicand has no perfect square factor, then write "cannot be simplified."

1. $\sqrt{45}$
2. $\sqrt{63}$
3. $\sqrt{40}$
4. $\sqrt{54}$
5. $\sqrt{200}$
6. $\sqrt{490}$
7. $10 \sqrt{8}$
8. $7 \sqrt{12}$
9. $4 \sqrt{18}$
10. $2 \sqrt{50}$
11. $5 \sqrt{300}$
12. $3 \sqrt{500}$
