Solving Quadratic Equations

INTRODUCTION

A quadratic equation is an equation in which the degree of the polynomial is 2.

The standard form for a quadratic equation is $ax^2 + bx + c = 0$ or $0 = ax^2 + bx + c$

Standard form means that one side of this equation is a polynomial in descending order and the other side is 0 (zero).

Group Exercise 1 Write each quadratic equation in standard form.

a) $9 - 6y + 2y^2 = 0$ b) $8 = 3 - 3x + 8x^2$ c) (x + 3)(x - 2) = 14

THE ZERO PRODUCT PRINCIPLE

The product (multiplication) of any two non-zero numbers will always be either positive or negative. The only way a product can be zero is if one of the factors is zero, as shown here:

The Zero Product Principle

 The Zero Product Principle

 If the product of two numbers is 0, then one of the numbers must be 0.

If $A \cdot B = 0$, then either A = 0 or B = 0.

The Zero Product Principle can be applied to any two factors that multiply to get 0. For example,

if (x + 7)(x - 5) = 0, then one of the factors must be 0:

	either	x + 7 = 0	or	x-5=0
In other words,	either	x = -7	or	x = 5

It is common to write the two solutions together: x = -7, 5. This is a solution set, sometimes written **{-7, 5}**.

Group Exercise 2 Solve the equation. Note: each of these quadratic equations was in standard form but has been factored.

a) (x + 3)(x - 2) = 0b) 0 = (v - 1)(v + 9)

c)
$$5x(x + 6) = 0$$

d) $(3x - 4)(2x - 5) = 0$

To apply the Zero Product Principle, one side of the equation must be 0 and the other side must be in a factored form. For example, we cannot apply the Zero Product Principle on $x^2 + x - 6 = 0$ until the left side of the equation is factored:

 $x^{2} + x - 6 = 0$ (x + 3)(x - 2) = 0Either x + 3 = 0 or x - 2 = 0Either x = -3 or x = 2The solution set: x = -3, 2

It is appropriate to verify that these two answers for x, -3 and 2, are actually solutions to the *original* equation. We verify they are *solutions* by "plugging in" each value in the original equations:

<u>Verify $x = -3$</u>	<u>Verify $x = 2$</u>
$x^2 + x - 6 = 0$	$x^2 + x - 6 = 0$
$(-3)^2 + (-3) - 6 = 0$	$(2)^2 + (2) - 6 = 0$
9 + (-3) - 6 = 0	4 + 2 - 6 = 0
6 - 6 = 0	6 - 6 = 0
$0 = 0 \checkmark$	$0 = 0 \checkmark$

Yes, the solution set is {-3, 2}.

Sometimes, verifying that an answer is a solution can be done mentally, as long as it is done carefully.

Group Exercise 3

To verify solutions, it is important to place the answers into the original equation and not the factored form of the equation. Why is this important?

Example 1:	Solve each equation.		
a) $-2r^2$	a - 8r = 0 b) ($0 = 2y^2 - 7y + 3$	
Procedure: Factor the polynomial and apply the Zero Pr write the solutions in a solution set.		ro Product Principle. <u>Verify the answers</u> and	
Answer:			
a)	$-2r^2 - 8r = 0$	Factor the left side. Extract $-2r$.	
	-2r(r+4) = 0	Set each factor equal to 0.	
-2r	r = 0 or $r + 4 = 0$	Solve each linear equation.	
r	r = 0 or $r = -4$	A solution may be 0.	
	r = 0, -4 Verify these answers	s to show they are solutions.	
	- 2		
b) 0	$0 = 2y^2 - 7y + 3$	Factor the right side. Use the Factor Game.	
0	y = (2y - 1)(y - 3)	Set each factor equal to 0.	
2y - 1	= 0 or y - 3 = 0	Solve each linear equation.	
у	$y = \frac{1}{2}$ or $y = 3$	A solution may be an integer or a fraction.	
$y = \frac{1}{2}$, 3 <u>Verify these answers to show they are solutions</u> .			

Notice that, in Example 1b), 0 is on the left side. That is okay. The Zero Product Principle works the same way as long as 0 is on one side or the other.

Group Exercise 4 Solve each equation by factoring.

a) $-5x^2 + 20x = 0$ b) $0 = m^2 + 3m - 28$

To solve a quadratic equation, the polynomial must first be set equal to 0.

Group Exercise 5 Solve each equation by first putting it in standard form; factor to solve the equation. Verify the answers are solutions to the equation.

a) $y^2 + 2y = 8y - 9$ b) (3v - 1)(v - 5) = -15

THE SQUARE ROOT PROPERTY OF EQUATIONS

Consider the equation $x^2 = 25$. There are two ways that we can approach this. Whichever technique we choose, we should get the same solution set.

Technique 1: Solve by	factori	ng	Technique 2:	Solve by taking the square root of each side:
$x^2 =$	25	Add -25 to each side		$x^2 = 25$
$x^2 - 25 =$	0	Factor	٦	$\sqrt{x^2} = \sqrt{25}$
(x - 5)(x + 5) =	0	Solve.	This appears to	have only <u>one solution</u> , $x = 5$.
x = 5, -5	Two Sol	lutions.	However, we kr we can represen	how there are two solutions, and t them as $x = \pm 5$

Technique 2 is an example of ...

The Square Root Property of Equations			
If $x^2 = a$	If one side is squared and the other side is a number, we can take the square root of each side to eliminate the exponent.		
then $\sqrt{x^2} = \sqrt{a}$	The radicand will have two solutions: one positive and one negative.		
and $x = \pm \sqrt{a}$			

Example 2:	Solve $(y+4)^2 = 36$ using the Square Root Property of Equations.		
Procedure:	Take the square root of each side. The following step must include the \pm symbol in front of the evaluated square root.		
Answer:	$(y+4)^2 = 36$	Take the square root of each side.	
	$\sqrt{(y+4)^2} = \sqrt{36}$	For the next step, place \pm in front of the 6	
	$y + 4 = \pm 6$	Set $y + 4$ equal to 6 and then to -6.	
y + 4	4 = 6 or $y + 4 = -6$	Solve each linear equation.	
2	y = 2 or $y = -10$	Combine the solutions.	
	y = 2, -10		

Group Exercise 6

Solve each equation using the Square Root Property of Equations. Verify the answers are solutions to the equation.

a) $(x-5)^2 = 16$ b) $(2y+3)^2 = 49$

Focus Exercises

Solve each equation. Verify the answers are solutions to the equation.

1. $3r^2 + 12r = 0$ **2.** $y^2 - y - 90 = 0$

3.
$$3p^2 + p = 10$$
 4. $v(8v + 2) = 15$

5.
$$w^2 = 6$$
 6. $(m - 9)^2 = 4$

Supplemental Exercises

Solve each equation. Verify the answers are solutions to the equation.

1.	$6x^2 - 54x = 0$	2.	$x^2 + 2x - 35 = 0$
3.	$2n^2 - 13n + 15 = 0$	4.	$4w^2 - 5w - 6 = 0$
5.	$9k^2 - 16 = 0$	6.	$k^2 - 5k + 2 = -4$
7.	$x^2 + 5x - 8 = 28$	8.	$w^2 + 2w - 4 = 59$
9.	$6w = 5w^2 - 8$	10.	$-3x^2 + 4x = -15$
11.	$y^2 - y = 18 - 4y$	12.	$4x - x^2 = 4$
13.	(x - 3)(x + 7) = -16	14.	(y+6)(2y-3) = -28
15.	(x-1)(6x+5) = x+3	16.	$m^2 = 81$
17.	$(4x + 1)^2 = 25$	18.	$(x - 6)^2 = x + 6$