Solving Quadratic Equations

INTRODUCTION

A quadratic equation is an equation in which the degree of the polynomial is 2 .

The standard form for a quadratic equation is

$$
a x^{2}+b x+c=0 \quad \text { or } \quad 0=a x^{2}+b x+c
$$

Standard form means that one side of this equation is a polynomial in descending order and the other side is 0 (zero).

Group Exercise $1 \quad$ Write each quadratic equation in standard form.
a) $9-6 y+2 y^{2}=0$
b) $8=3-3 x+8 x^{2}$
c) $(x+3)(x-2)=14$

The Zero Product PrinciPle

The product (multiplication) of any two non-zero numbers will always be either positive or negative. The only way a product can be zero is if one of the factors is zero, as shown here:

The Zero Product Principle

If the product of two numbers is 0 , then one of the numbers must be 0 .

$$
\text { If } A \cdot B=0, \text { then either } A=0 \text { or } B=0
$$

The Zero Product Principle can be applied to any two factors that multiply to get 0 . For example,

$$
\begin{aligned}
& \text { if }(\boldsymbol{x}+\mathbf{7})(\boldsymbol{x}-\mathbf{5})=\mathbf{0} \text {, then one of the factors must be } 0 \text { : } \\
& \text { either } \boldsymbol{x}+\mathbf{7}=\mathbf{0} \quad \text { or } \quad \boldsymbol{x}-\mathbf{5}=\mathbf{0}
\end{aligned}
$$

In other words, either $\boldsymbol{x}=\mathbf{- 7} \quad$ or $\quad \boldsymbol{x}=\mathbf{5}$

It is common to write the two solutions together: $\boldsymbol{x}=\mathbf{- 7 , 5}$. This is a solution set, sometimes written $\{-7,5\}$.

Group Exercise 2 Solve the equation. Note: each of these quadratic equations was in standard form but has been factored.
a) $(x+3)(x-2)=0$
b) $0=(v-1)(v+9)$
c) $5 x(x+6)=0$
d) $(3 x-4)(2 x-5)=0$

To apply the Zero Product Principle, one side of the equation must be 0 and the other side must be in a factored form. For example, we cannot apply the Zero Product Principle on $x^{2}+x-6=0$ until the left side of the equation is factored:

$$
\begin{array}{r}
x^{2}+x-6=0 \\
(x+3)(x-2)=0
\end{array}
$$

| | Either | $\boldsymbol{x}+\mathbf{3}$ | $=\mathbf{0}$ | or | $\boldsymbol{x}-\mathbf{2}$ |
| ---: | :--- | ---: | :--- | ---: | :--- |$=\mathbf{0}$

$$
\text { The solution set: } \quad x=-3,2
$$

It is appropriate to verify that these two answers for $x,-3$ and 2 , are actually solutions to the original equation. We verify they are solutions by "plugging in" each value in the original equations:

$$
\begin{aligned}
& \text { Verify } x=-3 \\
& x^{2}+x-6=0 \\
& \text { ? } \\
& (-3)^{2}+(-3)-6=0 \\
& 9+(-3)-6 \stackrel{?}{=} 0 \\
& 6-6 \stackrel{?}{=} 0 \\
& 0=0 \\
& \text { Verify } x=2 \\
& x^{2}+x-6=0 \\
& (2)^{2}+(2)-6=0 \\
& 4+2-6=0 \\
& 6-6=0 \\
& 0=0 \checkmark
\end{aligned}
$$

Yes, the solution set is $\{-\mathbf{3}, \mathbf{2}\}$.

Sometimes, verifying that an answer is a solution can be done mentally, as long as it is done carefully.

Group Exercise 3 To verify solutions, it is important to place the answers into the original equation and not the factored form of the equation. Why is this important?

Example 1: Solve each equation.
a) $-2 r^{2}-8 r=0$
b) $0=2 y^{2}-7 y+3$

Procedure: Factor the polynomial and apply the Zero Product Principle. Verify the answers and write the solutions in a solution set.

Answer:
a)

| $-2 r^{2}-8 r=0$ | Factor the left side. Extract $-2 r$. |
| ---: | :--- | :--- |
| $-2 r(r+4)=0$ | Set each factor equal to 0. |
| $-2 r=0 \quad$ or $\quad r+4=0$ | Solve each linear equation. |
| $r=0 \quad$ or $\quad r=-4$ | A solution may be 0. |

$r=0,-4 \quad$ Verify these answers to show they are solutions.
b) $\quad 0=2 y^{2}-7 y+3 \quad$ Factor the right side. Use the Factor Game.

$$
\begin{array}{rlrl}
0 & =(2 y-1)(y-3) & \text { Set each factor equal to } 0 . \\
2 y-1 & =0 & \text { or } \quad y-3=0 & \text { Solve each linear equation. } \\
y & =\frac{1}{2} \text { or } \quad y=3 & \text { A solution may be an integer or a fraction. } \\
y & =\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{3} & \text { Verify these answers to show they are solutions. }
\end{array}
$$

Notice that, in Example 1b), 0 is on the left side. That is okay. The Zero Product Principle works the same way as long as 0 is on one side or the other.

Group Exercise 4 Solve each equation by factoring.
a) $-5 x^{2}+20 x=0$
b) $0=m^{2}+3 m-28$

To solve a quadratic equation, the polynomial must first be set equal to 0 .

Group Exercise 5
Solve each equation by first putting it in standard form; factor to solve the equation. Verify the answers are solutions to the equation.
a) $y^{2}+2 y=8 y-9$
b) $(3 v-1)(v-5)=-15$

The Square Root Property of Equations

Consider the equation $x^{2}=25$. There are two ways that we can approach this. Whichever technique we choose, we should get the same solution set.

Technique 1: Solve by factoring

$$
\begin{aligned}
x^{2} & =25 & & \text { Add }-25 \text { to each side } \\
x^{2}-25 & =0 & & \text { Factor } \\
(x-5)(x+5) & =0 & & \text { Solve. }
\end{aligned}
$$

$$
x=5,-5 \quad \text { Two Solutions. }
$$

Technique 2: Solve by taking the square root of each side:

$$
\begin{aligned}
x^{2} & =25 \\
\sqrt{x^{2}} & =\sqrt{25}
\end{aligned}
$$

This appears to have only one solution, $x=5$. However, we know there are two solutions, and we can represent them as $x= \pm 5$

Technique 2 is an example of ...

The Square Root Property of Equations

$$
\begin{aligned}
\text { If } x^{2} & =a & \begin{array}{l}
\text { If one side is squared and the other side is a number, we can } \\
\text { take the square root of each side to eliminate the exponent. }
\end{array} \\
\text { then } \sqrt{x^{2}} & =\sqrt{a} & \begin{array}{l}
\text { The radicand will have two solutions: } \\
\text { one positive and one negative. }
\end{array} \\
\text { and } x & = \pm \sqrt{a} &
\end{aligned}
$$

Example 2: Solve $(y+4)^{2}=36$ using the Square Root Property of Equations.
Procedure: Take the square root of each side. The following step must include the \pm symbol in front of the evaluated square root.

Answer:

$$
\begin{array}{cl}
(y+4)^{2}=36 & \text { Take the square root of each side. } \\
\sqrt{(y+4)^{2}}=\sqrt{36} & \text { For the next step, place } \pm \text { in front of the } 6 \\
y+4= \pm 6 & \text { Set } y+4 \text { equal to } 6 \text { and then to }-6 . \\
y+4=6 \begin{array}{ll}
\text { or } & y+4=-6 \\
y=2 & \text { or } \quad \begin{array}{l}
\text { or }
\end{array} \\
y=-10 & \text { Solve each linear equation. } \\
y=\mathbf{2 n} & \text { Combine the solutions. }
\end{array} \\
\hline
\end{array}
$$

$\overline{\text { Group Exercise } 6}$ Solve each equation using the Square Root Property of Equations. Verify the answers are solutions to the equation.
a) $(x-5)^{2}=16$
b) $(2 y+3)^{2}=49$

Focus Exercises

Solve each equation. Verify the answers are solutions to the equation.

1. $3 r^{2}+12 r=0$
2. $y^{2}-y-90=0$
3. $3 p^{2}+p=10$
4. $v(8 v+2)=15$
5. $w^{2}=6$
6. $(m-9)^{2}=4$

Supplemental Exercises

Solve each equation. Verify the answers are solutions to the equation.

1. $6 x^{2}-54 x=0$
2. $x^{2}+2 x-35=0$
3. $2 n^{2}-13 n+15=0$
4. $4 w^{2}-5 w-6=0$
5. $9 k^{2}-16=0$
6. $k^{2}-5 k+2=-4$
7. $x^{2}+5 x-8=28$
8. $w^{2}+2 w-4=59$
9. $6 w=5 w^{2}-8$
10. $-3 x^{2}+4 x=-15$
11. $y^{2}-y=18-4 y$
12. $4 x-x^{2}=4$
13. $(x-3)(x+7)=-16$
14. $(y+6)(2 y-3)=-28$
15. $(x-1)(6 x+5)=x+3$
16. $m^{2}=81$
17. $(4 x+1)^{2}=25$
18. $(x-6)^{2}=x+6$
