Chapter 5, Trigonometric Identities

Focus Exercise Answers

Section 5.1 Proving Trigonometric Identities

1. $\sin \theta$
2. $\frac{\sin ^{2} \theta}{\cos \theta}$
3. $\cos \theta$
4. $\frac{\cos \theta}{\sin ^{2} \theta}$
5. $\frac{\cos ^{2} \theta}{\sin \theta}$
6. $\sec \theta$
7. $\frac{\cos \theta}{\sin ^{2} \theta}$ or $\csc \theta \cot \theta$
8. $\cos ^{2} \theta$
9. $\csc \theta$
10. $\csc ^{2} \theta$
11. $\frac{\sin \theta+1}{\cos \theta}$
12. $\frac{2 \cos \theta}{\sin \theta}$ or $2 \cot \theta$
13. 0
14. $\frac{1-\sin ^{2} \theta}{\cos \theta}$ or $\cos \theta$
15. $\mathrm{LCD}=\cos ^{2} \theta ; \frac{\cos \theta+1}{\cos ^{2} \theta}$
16. $\mathrm{LCD}=\sin \theta ; \frac{1-\sin ^{2} \theta}{\sin \theta}$ or $\frac{\cos ^{2} \theta}{\sin \theta}$
17. $\mathrm{LCD}=\sin \theta \cos \theta ; \frac{\sin \theta}{\cos \theta}$
18. $\mathrm{LCD}=\sin \theta \cos \theta ; \frac{1}{\sin \theta \cos \theta}$
19. $\sin \theta-\cos ^{2} \theta$
20. $\frac{1}{\cos \theta}+1$ or $\frac{1+\cos \theta}{\cos \theta}$ or $\sec \theta+1$
21. $\cos ^{2} \theta+3 \cos \theta+2$
22. $1+2 \sin \theta \cos \theta$

For \#23-30, full answers are not shown. Instead, strategies are given as to how to work the proof:
\#23-27: On the left side, write the expression in terms of sine and cosine only; simplify using the trigonometric reciprocal and ratio identities.
\#28-29: On the left side, write the expression in terms of sine and cosine, combine the fractions, and use a Pythagorean Identity to arrive at a conclusion.
\#30: On the left side, write the expression in terms of sine and cosine and use a Pythagorean Identity to arrive at a conclusion.

Section 5.2 Verifying Trigonometric Identities

For \#1-12, full answers are not shown. Instead, hints are given as to how to start the proof:

1. On the left side, rearrange the terms to see an important identity.
2. On the left side, split the fraction.
3. On the right side, convert to sine/cosine. Simplify.
4. On the right side, distribute and simplify. You can convert to sine/cosine before or after distributing.
5. One option: On the right side, use a Pythagorean identity. Factor and simplify.

Alternative: On the left side, convert to sine/cosine and simplify.
6. One option: On the right side, use a Pythagorean identity. Alternative: On the right side, multiply by a conjugate and simplify.
7. On the left side, get common denominators. Simplify.
8. On the left side, convert to sine/cosine. Simplify. Eventually, a Pythagorean identity is used.
9. On the left side, distribute and simplify; on scratch paper, simplify the right side to give guidance on how to complete the proof.
10. One option: On the left side, multiply by the denominator's conjugate; on scratch paper, simplify the right side to give guidance on how to complete the proof.
Alternative: On the right side, multiply out the quantity; convert to sine/cosine, and factor the numerator and/or denominator.
11. One option: On the left side, Convert to sine/cosine. Simplify the complex fraction.

Alternative: On the left side, split the fraction and simplify.
12. One option: On the left side, Convert to sine/cosine. Simplify the complex fraction. Alternative: On the left side, split the fraction and simplify.

For \#13-18, one option is shown along with the first step. For some, hints might be given as to alternative answers. You are encouraged to choose a different value than the one shown.
13. One option: $\theta=\frac{\pi}{2}$

$$
\sin \left(-\frac{\pi}{2}\right) \stackrel{?}{=} \sin \left(\frac{\pi}{2}\right)
$$

In general, any value that doesn't make sine 0 is a counterexample.
15. One option: $x=\pi$

$$
(1+\cos \pi)^{2} \stackrel{?}{=} 1+\cos ^{2} \pi
$$

In general, any value that doesn't make cosine 0 is a counterexample.
14. One option: $\theta=\frac{\pi}{4}$
$\cos \left(-\frac{\pi}{4}\right) \stackrel{?}{=}-\cos \left(\frac{\pi}{4}\right)$
In general, any value that doesn't make cosine 0 is a counterexample.
16. One option: $x=\frac{\pi}{3}$
$\tan ^{2}\left(\frac{\pi}{3}\right)-1 \stackrel{?}{=} \sec ^{2}\left(\frac{\pi}{3}\right)$
In general, any value that doesn't make cosine 0 is a counterexample.
17. One option: $x=\frac{\pi}{4}$

$$
\sin \left(2 \cdot \frac{\pi}{4}\right) \stackrel{?}{=} \sin \left(\frac{\pi}{4}\right) \cdot \cos \left(\frac{\pi}{4}\right)
$$

In general, any value that doesn't make sine or cosine 0 is a counterexample.
18. One option: $x=\frac{\pi}{2}$
$\cos ^{2}\left(\frac{\pi}{2}\right)-\sin ^{2}\left(\frac{\pi}{2}\right) \stackrel{?}{=} 1$
In general, any value that doesn't make sine 0 is a counterexample.

Section 5.3 Sum and Difference Formulas

1. One option: $A=45^{\circ}$ and $B=135^{\circ}$

$$
\cos \left(45^{\circ}+135^{\circ}\right) \stackrel{!}{=} \cos \left(45^{\circ}\right)+\cos \left(135^{\circ}\right)
$$

2. One option: $A=45^{\circ}$ and $B=135^{\circ}$

$$
\sin \left(45^{\circ}+135^{\circ}\right) \stackrel{?}{=} \sin \left(45^{\circ}\right)+\sin \left(135^{\circ}\right)
$$

3. $\frac{\sqrt{6}+\sqrt{2}}{4}$
4. $\frac{\sqrt{6}+\sqrt{2}}{4}$
5. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
6. $\frac{\sqrt{6}-\sqrt{2}}{4}$
7. $2-\sqrt{3}$
8. $-2-\sqrt{3}$
9. $\frac{\sqrt{2}}{2}$
10. $-\frac{\sqrt{2}}{2}$
11. $-\frac{\sqrt{3}}{3}$
12. $\sqrt{3}$
13. $-\frac{\sqrt{2}}{2}$
14. 1
15. 1
16. $\frac{1}{2}$
17. Undefined
18. 1

Answers for the proofs \#21-28 are not shown, but hints are given.
21. Start with $\sin (-x)=\sin (0-x)$

Then use the difference identity for sine to simplify the right side.
23. On the left side, carefully use the sum and difference identities for sine; simplify.
25. On the left side, use the difference identity for sine; simplify.
22. Start with $\tan (-x)=\frac{\sin (-x)}{\cos (-x)}$

Or, start with $\tan (-x)=\tan (0-x)$
24. On the left side, carefully use the sum and difference identities for cosine; simplify.
26. On the left side, use the sum identity for cosine; simplify.
$27 \& 28 . \quad$ On the left side, first write the expression in terms of sine and cosine; then use the appropriate difference identity. Simplify.

Section 5.4 Double Angle Formulas

1. a) $\sin (2 A)=\frac{-4 \sqrt{5}}{9}$
b) $\quad \cos (2 A)=\frac{1}{9}$
2. a) $\sin (2 A)=\frac{3}{5}$
b) $\quad \cos (2 A)=\frac{4}{5}$
3. a) $\sin (2 A)=\frac{-12}{13}$
b) $\quad \cos (2 A)=\frac{5}{13}$
4. $\tan (2 A)=-4 \sqrt{5}$
5. $\tan (2 A)=\frac{-4}{3}$
6. $\frac{\sqrt{3}}{2}$
7. $\frac{\sqrt{3}}{2}$
8. $-\frac{\sqrt{3}}{3}$
9. $-\frac{1}{2}$
10. The author made an error on this exercise. As written, $2 \sin \left(63.5^{\circ}\right) \cos \left(63.5^{\circ}\right)$ becomes $\sin \left(127^{\circ}\right)$, which is not one of our familiar angle measures. Instead, the author meant to write the exercise as $2 \sin \left(67.5^{\circ}\right) \cos \left(67.5^{\circ}\right)$. When done correctly, this answer is $\frac{\sqrt{2}}{2}$.
11. $-\frac{1}{4}$
12. $-\frac{1}{4}$
13. $\frac{1}{2}$
14. $\frac{-1}{2 \sqrt{3}}=\frac{-\sqrt{3}}{6}$
15. $1-\frac{\sqrt{2}}{2}$
16. $-\frac{\sqrt{3}}{2}-1$
17. $-\frac{\sqrt{3}}{2}-1$

For \#27-30, full answers are not shown. Instead, hints are given as to how to start the proof:
27. On the left side, multiply out the quantity and simplify.
28. On the left side, use one of the three double angle identities for cosine and simplify. Note: any one of the three identities will work (eventually), but one identity is a better choice than the other two.
29. On the left side, use the double angle identity for sine and one of the double angle identities for cosine; simplify. Note: any one of the three cosine identities for cosine will work (eventually), but one is a better choice than the others.
30. On the right side, first write the expression in terms of sine and cosine, then use a Pythagorean identity and a double angle identity to simplify.

Section 5.5 Half-Angle Formulas

1. $\frac{\sqrt{2-\sqrt{3}}}{2}$
2. $\frac{\sqrt{2+\sqrt{2}}}{2}$
3. $\frac{\sqrt{2+\sqrt{2}}}{2}$
4. $\frac{\sqrt{2+\sqrt{3}}}{2}$
5. $-2-\sqrt{3}$
6. $1+\sqrt{2}$
7. $\frac{\sqrt{2-\sqrt{2}}}{2}$
8. $-\frac{\sqrt{2-\sqrt{3}}}{2}$
9. $\frac{\sqrt{2+\sqrt{2}}}{2}$
10. $\frac{\sqrt{2+\sqrt{3}}}{2}$
11. $1+\sqrt{2}$
12. $2-\sqrt{3}$
13. $-\frac{\sqrt{30}}{6}$
14. $\frac{\sqrt{6}}{3}$
15. $\frac{\sqrt{15}}{5}$
16. $-\frac{\sqrt{70}}{10}$
17. $-\sqrt{7}$
18. $\frac{\sqrt{2}}{2}$
19. $\frac{1+\cos (A)}{2}$
20. $\frac{1-\cos (A)}{2}$
21. $\frac{\sin (A)}{2}$
22. $\frac{1+\cos (A)}{\sin (A)}$
\#23-26, hints are given:
23. Use the half angle identity on the left-hand side. Separate the fractions.
24. Use two different half-angle identities on the left-hand side.
25. and 26. Use the expressions found in \#19 and \#20.
