Chapter 5, Trigonometric Identities

Focus Exercise Answers

Section 5.1 **Proving Trigonometric Identities**

1.	$\sin \theta$ 2.	$\frac{s}{c}$	$\frac{\sin^2\theta}{\cos\theta}$		3.	$\cos \theta$		4. $\frac{\cos\theta}{\sin^2\theta}$
5.	$\frac{\cos^2\theta}{\sin\theta}$		6.	$\sec \theta$			7.	$\frac{\cos\theta}{\sin^2\theta} \text{or} \csc\theta\cot\theta$
8.	$\cos^2\theta$		9.	$\csc \theta$			10.	$\csc^2\theta$
11.	$\frac{\sin\theta + 1}{\cos\theta}$		12.	$\frac{2\cos\theta}{\sin\theta}$	or 2c	$\cot heta$	13.	0
14.	$\frac{1-\sin^2\theta}{\cos\theta} \text{or } \cos\theta$				15.	LCD =	cos ²	$\theta; \frac{\cos\theta + 1}{\cos^2\theta}$
16.	LCD = $\sin\theta$; $\frac{1-\sin\theta}{\sin\theta}$	$\frac{2\theta}{2}$	or $\frac{\cos}{\sin}$	$\frac{\partial^2 \theta}{\partial \theta}$	17.	LCD =	sinθ	$\cos\theta$; $\frac{\sin\theta}{\cos\theta}$
18.	LCD = $\sin\theta\cos\theta$; $\frac{1}{\sin\theta\cos\theta}$				19. $\sin\theta - \cos^2\theta$			
20.	$\frac{1}{\cos\theta}$ + 1 or $\frac{1+\cos\theta}{\cos\theta}$	9 0	or sec θ	+ 1	21.	$\cos^2\theta$ +	+ 3co	$s\theta + 2$
22.	$1 + 2\sin\theta\cos\theta$							

For #23-30, full answers are not shown. Instead, strategies are given as to how to work the proof:

- **#23-27:** On the left side, write the expression in terms of sine and cosine only; simplify using the trigonometric reciprocal and ratio identities.
- **#28-29:** On the left side, write the expression in terms of sine and cosine, combine the fractions, and use a Pythagorean Identity to arrive at a conclusion.
- #30: On the left side, write the expression in terms of sine and cosine and use a Pythagorean Identity to arrive at a conclusion.

Section 5.2 Verifying Trigonometric Identities

For #1-12, full answers are not shown. Instead, hints are given as to how to start the proof:

- 1. On the left side, rearrange the terms to see an important identity.
- 2. On the left side, split the fraction.
- 3. On the right side, convert to sine/cosine. Simplify.
- **4.** On the right side, distribute and simplify. You can convert to sine/cosine before or after distributing.
- 5. One option: On the right side, use a Pythagorean identity. Factor and simplify. Alternative: On the left side, convert to sine/cosine and simplify.
- 6. One option: On the right side, use a Pythagorean identity. Alternative: On the right side, multiply by a conjugate and simplify.
- 7. On the left side, get common denominators. Simplify.
- 8. On the left side, convert to sine/cosine. Simplify. Eventually, a Pythagorean identity is used.
- **9.** On the left side, distribute and simplify; on scratch paper, simplify the right side to give guidance on how to complete the proof.
- One option: On the left side, multiply by the denominator's conjugate; on scratch paper, simplify the right side to give guidance on how to complete the proof.
 Alternative: On the right side, multiply out the quantity; convert to sine/cosine, and factor the numerator and/or denominator.
- **11. One option:** On the left side, Convert to sine/cosine. Simplify the complex fraction. **Alternative:** On the left side, split the fraction and simplify.
- **12. One option:** On the left side, Convert to sine/cosine. Simplify the complex fraction. **Alternative:** On the left side, split the fraction and simplify.

For #13-18, one option is shown along with the first step. For some, hints might be given as to alternative answers. You are encouraged to choose a different value than the one shown.

13. One option: $\theta = \frac{\pi}{2}$

$$\sin\left(-\frac{\pi}{2}\right) \stackrel{?}{=} \sin\left(\frac{\pi}{2}\right)$$

In general, any value that doesn't make sine 0 is a counterexample.

15. One option: $x = \pi$

$$(1 + \cos \pi)^2 \stackrel{?}{=} 1 + \cos^2 \pi$$

In general, any value that doesn't make cosine 0 is a counterexample.

14. One option: $\theta = \frac{\pi}{4}$

 $\cos\left(-\frac{\pi}{4}\right) \stackrel{?}{=} -\cos\left(\frac{\pi}{4}\right)$

In general, any value that doesn't make cosine 0 is a counterexample.

16. One option: $x = \frac{\pi}{3}$ $\tan^2(\frac{\pi}{3}) - 1 \stackrel{?}{=} \sec^2(\frac{\pi}{3})$

In general, any value that doesn't make cosine 0 is a counterexample.

17. One option: $x = \frac{\pi}{4}$ $\sin\left(2\cdot\frac{\pi}{4}\right) \stackrel{?}{=} \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{4}\right)$

In general, any value that doesn't make sine or cosine 0 is a counterexample.

Section 5.3 Sum and Difference Formulas

1. One option: $A = 45^{\circ}$ and $B = 135^{\circ}$ $\cos(45^{\circ} + 135^{\circ}) \stackrel{?}{=} \cos(45^{\circ}) + \cos(135^{\circ})$ **18.** One option: $x = \frac{\pi}{2}$ $\cos^2\left(\frac{\pi}{2}\right) - \sin^2\left(\frac{\pi}{2}\right) \stackrel{?}{=} 1$ In general, any value that d

In general, any value that doesn't make sine 0 is a counterexample.

- 2. One option: $A = 45^{\circ}$ and $B = 135^{\circ}$ $\sin(45^{\circ} + 135^{\circ}) \stackrel{?}{=} \sin(45^{\circ}) + \sin(135^{\circ})$
- $6. \quad \frac{\sqrt{6}-\sqrt{2}}{4}$ 4. $\frac{\sqrt{6}+\sqrt{2}}{4}$ 5. $\frac{-\sqrt{6}-\sqrt{2}}{4}$ $\frac{\sqrt{6}+\sqrt{2}}{4}$ 3. 9. $\frac{\sqrt{3}}{2}$ 8. $-2 - \sqrt{3}$ $2 - \sqrt{3}$ 7. **10.** -1 **12.** $-\frac{\sqrt{2}}{2}$ 11. $\frac{\sqrt{2}}{2}$ **13.** $-\frac{\sqrt{3}}{3}$ 14. $\sqrt{3}$ 15. $-\frac{\sqrt{2}}{2}$ **18.** $\frac{1}{2}$ 16. 1 **17.** 1

19. Undefined **20.** 1

Answers for the proofs #21-28 are not shown, but hints are given.

- 21. Start with sin(-x) = sin(0 x)Then use the difference identity for sine to simplify the right side.
- **23.** On the left side, carefully use the sum and difference identities for sine; simplify.
- **25.** On the left side, use the difference identity for sine; simplify.

- 22. Start with $tan(-x) = \frac{sin(-x)}{cos(-x)}$ Or, start with tan(-x) = tan(0-x)
- **24.** On the left side, carefully use the sum and difference identities for cosine; simplify.
- **26.** On the left side, use the sum identity for cosine; simplify.
- **27 & 28.** On the left side, first write the expression in terms of sine and cosine; then use the appropriate difference identity. Simplify.

Section 5.4 Double Angle Formulas

1. a)
$$\sin(2A) = \frac{-4\sqrt{5}}{9}$$

b) $\cos(2A) = \frac{1}{9}$
2. a) $\sin(2A) = \frac{24}{25}$
b) $\cos(2A) = \frac{1}{9}$
b) $\cos(2A) = \frac{-7}{25}$

3. a)
$$\sin(2A) = \frac{3}{5}$$

b) $\cos(2A) = \frac{4}{5}$
4. a) $\sin(2A) = \frac{3\sqrt{7}}{8}$
b) $\cos(2A) = \frac{-1}{8}$

5. a)
$$\sin(2A) = \frac{-12}{13}$$

b) $\cos(2A) = \frac{5}{13}$
6. a) $\sin(2A) = \frac{40}{41}$
b) $\cos(2A) = \frac{9}{41}$

7.
$$\tan(2A) = -4\sqrt{5}$$

8. $\tan(2A) = \frac{-60}{11}$

- **9.** $\tan(2A) = \frac{-4}{3}$ **10.** $\tan(2A) = -2\sqrt{2}$
- **11.** $\frac{\sqrt{3}}{2}$ **12.** $\frac{\sqrt{3}}{2}$ **13.** $\frac{\sqrt{2}}{2}$ **14.** $\frac{1}{2}$
- **15.** $-\frac{1}{2}$ **16.** $-\frac{\sqrt{3}}{3}$ **17.** -1
- 18. The author made an error on this exercise. As written, $2\sin(63.5^\circ)\cos(63.5^\circ)$ becomes $\sin(127^\circ)$, which is not one of our familiar angle measures. Instead, the author meant to write the exercise as $2\sin(67.5^\circ)\cos(67.5^\circ)$. When done correctly, this answer is $\frac{\sqrt{2}}{2}$.
- 19. $-\frac{1}{4}$ 20. $-\frac{1}{4}$ 21. $\frac{1}{2}$

 22. $\frac{-1}{2\sqrt{3}} = \frac{-\sqrt{3}}{6}$ 23. $1 \frac{\sqrt{2}}{2}$ 24. $-\frac{\sqrt{3}}{2} + 1$

 25. $-\frac{\sqrt{3}}{2} 1$ 26. $-\frac{\sqrt{3}}{2} 1$

For #27-30, full answers are not shown. Instead, hints are given as to how to start the proof:

- **27.** On the left side, multiply out the quantity and simplify.
- **28.** On the left side, use one of the three double angle identities for cosine and simplify. Note: any one of the three identities will work (eventually), but one identity is a better choice than the other two.
- **29.** On the left side, use the double angle identity for sine and one of the double angle identities for cosine; simplify. Note: any one of the three cosine identities for cosine will work (eventually), but one is a better choice than the others.
- **30.** On the right side, first write the expression in terms of sine and cosine, then use a Pythagorean identity and a double angle identity to simplify.

Section 5.5 Half-Angle Formulas

1.
$$\frac{\sqrt{2}-\sqrt{3}}{2}$$
 2. $\frac{\sqrt{2}+\sqrt{2}}{2}$ 3. $\frac{\sqrt{2}+\sqrt{2}}{2}$ 4. $\frac{\sqrt{2}+\sqrt{3}}{2}$
5. $-2-\sqrt{3}$ 6. $1+\sqrt{2}$ 7. $\frac{\sqrt{2}-\sqrt{2}}{2}$ 8. $-\frac{\sqrt{2}-\sqrt{3}}{2}$
9. $\frac{\sqrt{2}+\sqrt{2}}{2}$ 10. $\frac{\sqrt{2}+\sqrt{3}}{2}$ 11. $1+\sqrt{2}$ 12. $2-\sqrt{3}$
13. $-\frac{\sqrt{30}}{6}$ 14. $\frac{\sqrt{6}}{3}$ 15. $\frac{\sqrt{15}}{5}$ 16. $-\frac{\sqrt{70}}{10}$
17. $-\sqrt{7}$ 18. $\frac{\sqrt{2}}{2}$ 19. $\frac{1+\cos(A)}{2}$ 20. $\frac{1-\cos(A)}{2}$
21. $\frac{\sin(A)}{2}$ 22. $\frac{1+\cos(A)}{\sin(A)}$

#23-26, hints are given:

- 23. Use the half angle identity on the left-hand side. Separate the fractions.
- **24.** Use two different half-angle identities on the left-hand side.
- **25.** and **26.** Use the expressions found in #19 and #20.