Chapter 5, Trigonometric Identities

Focus Exercise Answers, Odds only

Section 5.1 Proving Trigonometric Identities

1. $\sin \theta$
2. $\cos \theta$
3. $\frac{\cos ^{2} \theta}{\sin \theta}$
4. $\frac{\cos \theta}{\sin ^{2} \theta}$ or $\csc \theta \cot \theta$
5. $\csc \theta$
6. $\frac{\sin \theta+1}{\cos \theta}$
7. 0
8. $\mathrm{LCD}=\cos ^{2} \theta ; \frac{\cos \theta+1}{\cos ^{2} \theta}$
9. $\mathrm{LCD}=\sin \theta \cos \theta ; \frac{\sin \theta}{\cos \theta}$
10. $\sin \theta-\cos ^{2} \theta$
11. $\cos ^{2} \theta+3 \cos \theta+2$

For \#23-29, full answers are not shown. Instead, strategies are given as to how to work the proof:
\#23-27: On the left side, write the expression in terms of sine and cosine only; simplify using the trigonometric reciprocal and ratio identities.
\#29: On the left side, write the expression in terms of sine and cosine, combine the fractions, and use a Pythagorean Identity to arrive at a conclusion.

Section 5.2 Verifying Trigonometric Identities

For \#1-11, full answers are not shown. Instead, hints are given as to how to start the proof:

1. On the left side, rearrange the terms to see an important identity.
2. On the right side, convert to sine/cosine. Simplify.
3. One option: On the right side, use a Pythagorean identity. Factor and simplify. Alternative: On the left side, convert to sine/cosine and simplify.
4. On the left side, get common denominators. Simplify.
5. On the left side, distribute and simplify; on scratch paper, simplify the right side to give guidance on how to complete the proof.
6. One option: On the left side, Convert to sine/cosine. Simplify the complex fraction. Alternative: On the left side, split the fraction and simplify.

For \#13-17, one option is shown along with the first step. For some, hints might be given as to alternative answers. You are encouraged to choose a different value than the one shown.
13. One option: $\theta=\frac{\pi}{2}$
$\sin \left(-\frac{\pi}{2}\right) \stackrel{?}{=} \sin \left(\frac{\pi}{2}\right)$
In general, any value that doesn't make sine 0 is a counterexample.
17. One option: $x=\frac{\pi}{4}$

$$
\sin \left(2 \cdot \frac{\pi}{4}\right) \stackrel{?}{=} \sin \left(\frac{\pi}{4}\right) \cdot \cos \left(\frac{\pi}{4}\right)
$$

In general, any value that doesn't make sine or cosine 0 is a counterexample.

Section 5.3 Sum and Difference Formulas

1. One option: $A=45^{\circ}$ and $B=135^{\circ}$

$$
\cos \left(45^{\circ}+135^{\circ}\right) \stackrel{?}{=} \cos \left(45^{\circ}\right)+\cos \left(135^{\circ}\right)
$$

3. $\frac{\sqrt{6}+\sqrt{2}}{4}$
4. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
5. $2-\sqrt{3}$
6. $\frac{\sqrt{3}}{2}$
7. $\frac{\sqrt{2}}{2}$
8. $-\frac{\sqrt{3}}{3}$
9. Undefined

Answers for the proofs \#21-28 are not shown, but hints are given.
21. Start with $\sin (-x)=\sin (0-x)$ Then use the difference identity for sine to simplify the right side.
25. On the left side, use the difference identity for sine; simplify.
15. One option: $x=\pi$
$(1+\cos \pi)^{2} \stackrel{?}{=} 1+\cos ^{2} \pi$
In general, any value that doesn't make cosine 0 is a counterexample.

Section 5.4 Double Angle Formulas

1. a) $\sin (2 A)=\frac{-4 \sqrt{5}}{9}$
2. a) $\sin (2 A)=\frac{3}{5}$
b) $\quad \cos (2 A)=\frac{1}{9}$
b) $\quad \cos (2 A)=\frac{4}{5}$
3. a) $\sin (2 A)=\frac{-12}{13}$
b) $\quad \cos (2 A)=\frac{5}{13}$
4. $\tan (2 A)=-4 \sqrt{5}$
5. $\tan (2 A)=\frac{-4}{3}$
6. $\frac{\sqrt{3}}{2}$
7. $\frac{\sqrt{2}}{2}$
8. $-\frac{1}{2}$
9. -1

Note about \#18.

The author made an error on this exercise. As written, $2 \sin \left(63.5^{\circ}\right) \cos \left(63.5^{\circ}\right)$ becomes $\sin \left(127^{\circ}\right)$, which is not one of our familiar angle measures. Instead, the author meant to write the exercise as $2 \sin \left(67.5^{\circ}\right)$. Please correct this in your textbook.
19. $-\frac{1}{4}$
21. $\frac{1}{2}$
23. $1-\frac{\sqrt{2}}{2}$
25. $-\frac{\sqrt{3}}{2}-1$

For \#27-29, full answers are not shown. Instead, hints are given as to how to start the proof:
27. On the left side, multiply out the quantity and simplify.
29. On the left side, use the double angle identity for sine and one of the double angle identities for cosine; simplify. Note: any one of the three cosine identities for cosine will work (eventually), but one is a better choice than the others.

Section 5.5 Half-Angle Formulas

1. $\frac{\sqrt{2-\sqrt{3}}}{2}$
2. $\frac{\sqrt{2+\sqrt{2}}}{2}$
3. $-2-\sqrt{3}$
4. $\frac{\sqrt{2-\sqrt{2}}}{2}$
5. $\frac{\sqrt{2+\sqrt{2}}}{2}$
6. $1+\sqrt{2}$
7. $-\frac{\sqrt{30}}{6}$
8. $\frac{\sqrt{15}}{5}$
9. $-\sqrt{7}$
10. $\frac{1+\cos (A)}{2}$
11. $\frac{\sin (A)}{2}$
\#23-25, hints are given:
12. Use the half angle identity on the left-hand side. Separate the fractions.
13. Use the expressions found in \#19 and \#20.
