Chapter 6, Trigonometric Equations
 Focus Exercise Odd Answers

Sec. 6.1 Solving Trigonometric Equations

1. $q=30^{\circ}, 330^{\circ}$
2. $\theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$
3. $x=0, \pi, \frac{\pi}{4}, \frac{5 \pi}{4}$
4. $\left.\begin{array}{l}x=\frac{2 \pi}{3}+2 \pi k \\ x=\frac{4 \pi}{3}+2 \pi k\end{array}\right\} k \in Z$
5. $x=\frac{2 \pi}{3}, \frac{5 \pi}{3}$
6. $\theta=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$
7. $x=0, \pi, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
8. $\left.\begin{array}{l}\theta=135^{\circ}+360^{\circ} k \\ \theta=315^{\circ}+360^{\circ} k\end{array}\right\} \quad k \in \boldsymbol{Z}$

$$
\text { or } \ldots \quad \theta=135^{\circ}+180^{\circ} k
$$

Sec. 6.2 More Techniques for Solving Trigonometric Equations

1. $x=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
2. $\theta=0^{\circ}, 180^{\circ}, 270^{\circ}$
3. $\theta=90^{\circ}+180^{\circ} k, k \in Z$
4. $x=0, \pi, \frac{2 \pi}{3}, \frac{5 \pi}{3}$
*Note: The author made a couple of errors in writing \#11 and \#12. He used a plus sign when he meant to use a minus sign. Here are \#11 and 12 as they were intended to be. The answer to \#11 is at the end of this answer sheet, after Sec. 6.4 answers:

Solve for $x, 0 \leq x<2 \pi$
11. $3 \tan x-\cot x=0$
12. $\sin (2 x)-\tan x=0$.

Another Note: For \#13-15, the author did not write a solving interval; however, because the equations use the variable x, the solving interval is, by default, in terms of radians: $0 \leq x<2 \pi$.
13. $x=0, \frac{2 \pi}{3}$ (Note: $\frac{4 \pi}{3}$ is extraneous)
15. $x=\frac{\pi}{4}$ (Note: Depending on how you solved the equatin, either $\frac{3 \pi}{4}$ or $\frac{5 \pi}{4}$ is extraneous)

Sec. 6.3 Altered Arguments

1. $\theta=20^{\circ}, 200^{\circ}$
2. $\theta=170^{\circ}, 350^{\circ}$
3. $x=\frac{\pi}{4}, \frac{7 \pi}{4}$
4. $x=\frac{7 \pi}{8}, \frac{15 \pi}{8}$
5. $\theta=60^{\circ}, 180^{\circ}, 300^{\circ}$
6. $\theta=15^{\circ}, 105^{\circ}, 195^{\circ}, 285^{\circ}$

Note: For \#13-16, because the equations use the variable x, the solving interval should be in terms of radians: $0 \leq x<2 \pi$. The author accidentally wrote the solving interval in terms of degrees.
13. $x=\frac{\pi}{4}, \frac{5 \pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}, \frac{21 \pi}{12}$
15. $x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$

Sec. 6.4 Trigonometric Equations of Multiple Angle Measures

1. $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
2. $x=\frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}$
3. $\theta=0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}$
4. $\theta=90^{\circ}, 270^{\circ}$
5. $\left.\begin{array}{rl}\theta & =10^{\circ}+60^{\circ} k \\ \theta & =50^{\circ}+60^{\circ} k\end{array}\right\} k \in \boldsymbol{Z}$
6. $x=\frac{\pi}{4}+\frac{\pi}{2} k, k \in Z$

Answers to Sec. 6.2, corrected \#11 and 12 (see above on page 1 of this answer sheet):
11. $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
12. $x=0, \pi, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

