Chapter 6, Trigonometric Equations Focus Exercise Odd Answers

Sec. 6.1 Solving Trigonometric Equations

1. $q = 30^{\circ}, 330^{\circ}$ 3. $x = \frac{2\pi}{3}, \frac{5\pi}{3}$ 5. $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$ 7. $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$ 9. $x = 0, \pi, \frac{\pi}{4}, \frac{5\pi}{4}$ 11. $x = 0, \pi, \frac{7\pi}{6}, \frac{11\pi}{6}$ 13. $\frac{x = \frac{2\pi}{3} + 2\pi k}{x = \frac{4\pi}{3} + 2\pi k}$ $k \in \mathbb{Z}$ 15. $\frac{\theta = 135^{\circ} + 360^{\circ} k}{\theta = 315^{\circ} + 360^{\circ} k}$ $k \in \mathbb{Z}$ or ... $\theta = 135^{\circ} + 180^{\circ} k$

Sec. 6.2 More Techniques for Solving Trigonometric Equations

- 1. $x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$ 3. $\theta = 0^{\circ}, 180^{\circ}, 270^{\circ}$ 5. $\theta = 90^{\circ} + 180^{\circ}k, \ k \in \mathbb{Z}$ 7. $x = \frac{\pi}{2} + \pi k$ $x = \frac{\pi}{6} + 2\pi k$ $x = \frac{11\pi}{6} + 2\pi k$ $k \in \mathbb{Z}$
- **9.** $x = 0, \pi, \frac{2\pi}{3}, \frac{5\pi}{3}$ **11.** *No Solution as written.**
- *Note: The author made a couple of errors in writing #11 and #12. He used a plus sign when he meant to use a minus sign. Here are #11 and 12 as they were intended to be. The answer to #11 is at the end of this answer sheet, after Sec. 6.4 answers:

Solve for *x*, $0 \le x < 2\pi$

- **11.** $3\tan x \cot x = 0$ **12.** $\sin(2x) \tan x = 0$.
- Another Note: For #13-15, the author did not write a solving interval; however, because the equations use the variable x, the solving interval is, by default, in terms of radians: $0 \le x < 2\pi$.

13.
$$x = 0, \frac{2\pi}{3}$$
 (Note: $\frac{4\pi}{3}$ is extraneous)

15. $x = \frac{\pi}{4}$ (Note: Depending on how you solved the equatin, either $\frac{3\pi}{4}$ or $\frac{5\pi}{4}$ is extraneous)

Sec. 6.3 Altered Arguments

1.
$$\theta = 20^{\circ}, 200^{\circ}$$

3. $\theta = 170^{\circ}, 350^{\circ}$
5. $x = \frac{\pi}{4}, \frac{7\pi}{4}$
7. $x = \frac{7\pi}{8}, \frac{15\pi}{8}$
9. $\theta = 60^{\circ}, 180^{\circ}, 300^{\circ}$
11. $\theta = 15^{\circ}, 105^{\circ}, 195^{\circ}, 285^{\circ}$

Note: For #13-16, because the equations use the variable x, the solving interval should be in terms of radians: $0 \le x < 2\pi$. The author accidentally wrote the solving interval in terms of degrees.

13.
$$x = \frac{\pi}{4}, \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}, \frac{21\pi}{12}$$
 15. $x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$

Sec. 6.4 Trigonometric Equations of Multiple Angle Measures

1. $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ 3. $x = \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}$ 5. $\theta = 0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}$ 7. $\theta = 90^{\circ}, 270^{\circ}$ 9. $\frac{\theta = 10^{\circ} + 60^{\circ}k}{\theta = 50^{\circ} + 60^{\circ}k}$ $k \in \mathbb{Z}$ 11. $x = \frac{\pi}{4} + \frac{\pi}{2}k, \ k \in \mathbb{Z}$

Answers to Sec. 6.2, corrected #11 and 12 (see above on page 1 of this answer sheet):

11.
$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$
 12. $x = 0, \pi, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$