Chapter 7, The Calculator and Solving Triangles Focus Exercise Answers ODD

Sec. 7.1 Angle Measures in Degrees, Minutes, and Seconds

1.	42.4°	3.	8.757°	5.	20.26°
7.	49° 18′	9.	87° 07′ 30″	11.	135° 22′ 53″

Sec. 7.2 Scientific Calculators and Trigonometric Functions

1.	0.7660	3.	-0.7660	5.	Error (Undef.)	7.	0.8090
9.	0.4142	11.	0.9749	13.	1.3054	15.	-1.1106
17.	-1.2208	19.	1.0515	21.	$\theta = 89^{\circ}$	23.	$\theta = 49^{\circ}$
25.	$\theta = 140.5^{\circ}$	27.	$\theta = 55^{\circ}$	29.	$\theta = 54^{\circ}$	31.	$\theta = -46^{\circ}$

Section 7.3 Solving Right Triangles

1.	$B = 35^{\circ}$	3.	$B = 19.8^{\circ}$	5.	$A = 55^{\circ}$
	a = 12.9 in.		b = 5.3 cm		$B = 35^{\circ}$
	c = 15.7 in.		c = 15.5 cm		c = 12.2 in.

7. x = 67.5y = 35BD = 102.5

Section 7.4 Applications Involving Right Triangles

- 1. Mark's boat will be making an 18.5° angle with the shoreline.
- **3.** The distance across the lake is 273 yards.
- 5. The top of the third floor is 28 feet above the street.
- 7. The closer rock is 29 feet from the bottom of the cliff.

Section 7.5 Solving Oblique Triangles: Law of Sines

Note: Your answers might vary a little due to rounding errors.

1.	$B = 43^{\circ}$	3.	$C = 35^{\circ}$	5.	$B = 48.3^{\circ}$
	b = 8.4 in.		a = 25.8 in.		$C = 19.7^{\circ}$
	c = 12.3 in.		b = 17.7 in.		b = 8.9 ft

- 7. \overline{AB} is 12.5 m 9. The distance between the two docks is 215.4 yards.
- **11.** \overline{AB} is 15 in.; \overline{CB} is 17.7 in. **13.** The height of the Cypress is about 49 feet.
- **15.** The height of the spruce is 55.7 feet.

Section 7.6 Solving Oblique Triangles: Law of Cosines

Note: Your answers might vary a little due to rounding errors.

- 1. $A = 45.7^{\circ}$
 $B = 35.3^{\circ}$ 3. $A = 132.8^{\circ}$
 $C = 15.2^{\circ}$ 5. $A = 70^{\circ}$
 $B = 48.7^{\circ}$
 $C = 61.3^{\circ}$
- 7. $A = 29.6^{\circ}$ $B = 130^{\circ}$ $C = 20.4^{\circ}$
- 9. AD = 8.6 in.
- **11.** The distance between the two docks is 108.3 yards.
- **13.** a) Civic Avenue will be about 3.7 miles long.
 - **b**) The angle between Civic Avenue and Baker Street will be about 30.1°.

Section 7.7 Solving Oblique Triangles: The Ambiguous Case

Note: Your answers might vary a little due to rounding errors.

- 1. $h \approx 2.1$, and a < h, so there is no triangle.
- 3. $h \approx 11.60074$, which is very close to a = 11.6; this is close enough to say h = a, and it is safe to assume that *B* is a right angle: $B = 90^{\circ}$; $C = 25^{\circ}$; and $c \approx 5.4$ ft.
- **5.** A is obtuse, and a > b, so there is one triangle: $B \approx 36.6^{\circ}$; $C = 13.4^{\circ}$; and $c \approx 2.7$ ft.
- 7. $h \approx 12.40011$, which is very close to a = 12.4; this is close enough to say h = a, and it is safe to assume that *B* is a right angle: $B = 90^\circ$; $C = 58^\circ$; and $c \approx 19.8$ ft.
- 9. $h \approx 11.03$ and h < a < b, so there are two triangles:

 Δ_1 : $B_1 \approx 55.4^\circ$; $C_1 \approx 79.6^\circ$; and $c_1 \approx 18.6$ cm.

Δ₂: $B_2 \approx 124.6^\circ$; $C_2 \approx 10.4^\circ$; and $c_2 \approx 3.4$ cm.