# Chapter 7, The Calculator and Solving Triangles <br> Focus Exercise Answers ODD 

Sec. 7.1 Angle Measures in Degrees, Minutes, and Seconds

1. $42.4^{\circ}$
2. $8.757^{\circ}$
3. $20.26^{\circ}$
4. $49^{\circ} 18^{\prime}$
5. $87^{\circ} 07^{\prime} 30^{\prime \prime}$
6. $135^{\circ} 22^{\prime} 53^{\prime \prime}$

Sec. 7.2 Scientific Calculators and Trigonometric Functions

1. 0.7660
2. -0.7660
3. Error (Undef.)
4. 0.8090
5. 0.4142
6. 0.9749
7. 1.3054
8. -1.1106
9. -1.2208
10. 1.0515
11. $\theta=89^{\circ}$
12. $\theta=49^{\circ}$
13. $\theta=140.5^{\circ}$
14. $\theta=55^{\circ}$
15. $\theta=54^{\circ}$
16. $\theta=-46^{\circ}$

## Section 7.3 Solving Right Triangles

1. $B=35^{\circ}$
$a=12.9 \mathrm{in}$.
2. $B=19.8^{\circ}$
$b=5.3 \mathrm{~cm}$
$c=15.5 \mathrm{~cm}$
3. $A=55^{\circ}$
$B=35^{\circ}$
$c=12.2 \mathrm{in}$.
4. $x=67.5$
$y=35$
$B D=102.5$

## Section 7.4 Applications Involving Right Triangles

1. Mark's boat will be making an $18.5^{\circ}$ angle with the shoreline.
2. The distance across the lake is 273 yards.
3. The top of the third floor is 28 feet above the street.
4. The closer rock is 29 feet from the bottom of the cliff.

## Section 7.5 Solving Oblique Triangles: Law of Sines

Note: Your answers might vary a little due to rounding errors.

1. $B=43^{\circ}$
$b=8.4 \mathrm{in}$.
$c=12.3 \mathrm{in}$.
2. $C=35^{\circ}$
$a=25.8 \mathrm{in}$.
$b=17.7 \mathrm{in}$.
3. $B=48.3^{\circ}$
$C=19.7^{\circ}$
$b=8.9 \mathrm{ft}$
4. $\overline{A B}$ is 12.5 m
5. The distance between the two docks is 215.4 yards.
6. $\overline{A B}$ is $15 \mathrm{in} . ; \overline{C B}$ is 17.7 in .
7. The height of the Cypress is about 49 feet.
8. The height of the spruce is 55.7 feet.

## Section 7.6 Solving Oblique Triangles: Law of Cosines

Note: Your answers might vary a little due to rounding errors.

1. $A=45.7^{\circ}$
$B=35.3^{\circ}$
$c=29 \mathrm{in}$.
2. $A=132.8^{\circ}$
$C=15.2^{\circ}$
$b=10.1 \mathrm{yd}$
3. $A=70^{\circ}$
$B=48.7^{\circ}$
$C=61.3^{\circ}$
4. $A=29.6^{\circ}$
$B=130^{\circ}$
$C=20.4^{\circ}$
5. $A D=8.6$ in.
6. The distance between the two docks is 108.3 yards.
7. a) Civic Avenue will be about 3.7 miles long.
b) The angle between Civic Avenue and Baker Street will be about $30.1^{\circ}$.

## Section 7.7 Solving Oblique Triangles: The Ambiguous Case

Note: Your answers might vary a little due to rounding errors.

1. $h \approx 2.1$, and $a<h$, so there is no triangle.
2. $h \approx 11.60074$, which is very close to $a=11.6$; this is close enough to say $h=a$, and it is safe to assume that $B$ is a right angle: $B=90^{\circ} ; C=25^{\circ}$; and $c \approx 5.4 \mathrm{ft}$.
3. $\quad A$ is obtuse, and $a>b$, so there is one triangle: $B \approx 36.6^{\circ} ; C=13.4^{\circ}$; and $c \approx 2.7 \mathrm{ft}$.
4. $h \approx 12.40011$, which is very close to $a=12.4$; this is close enough to say $h=a$, and it is safe to assume that $B$ is a right angle: $B=90^{\circ} ; C=58^{\circ}$; and $c \approx 19.8 \mathrm{ft}$.
5. $h \approx 11.03$ and $h<a<b$, so there are two triangles:
$\Delta_{1}: B_{1} \approx 55.4^{\circ} ; C_{1} \approx 79.6^{\circ} ;$ and $c_{1} \approx 18.6 \mathrm{~cm}$.
$\boldsymbol{\Delta}_{\mathbf{2}}: B_{\mathbf{2}} \approx 124.6^{\circ} ; C_{\mathbf{2}} \approx 10.4^{\circ} ;$ and $c_{\mathbf{2}} \approx 3.4 \mathrm{~cm}$.
