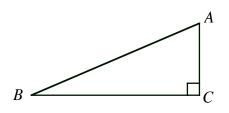
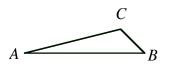
Test 1 Pre-Test

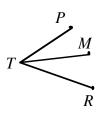
Name

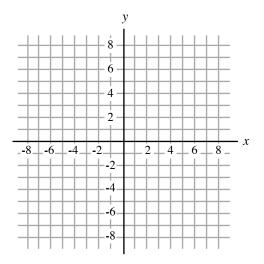

Rationalize all denominators, as necessary.

Rationalize the denominator and simplify the expression.


1. $\frac{-6}{3-\sqrt{6}}$

What degree measure represents the given portion of a circle? Draw a central angle that has that same number of degrees.


- 2. $\frac{7}{9}$ of a circle
- 3. In $\triangle ABC$, $m \angle B = 22^{\circ} 18' 41''$. Find $m \angle A$.


4. In $\triangle ABC$, $m \angle A = 17^{\circ} 26' 38''$ and $m \angle B = 44^{\circ} 31' 55''$. Find $m \angle C$.

- **5.** At right, \overline{TM} bisects $\angle PTR$.
- a) If $m \angle PTM = 28^{\circ} 43' 52''$, find $m \angle PTR$.
- b) If $m \angle PTR = 63^{\circ} 31' 18''$, find $m \angle PTM$.

- 6. Consider a circle centered at the origin that passes through (-4, $2\sqrt{5}$).
- a) Find the radius of the circle

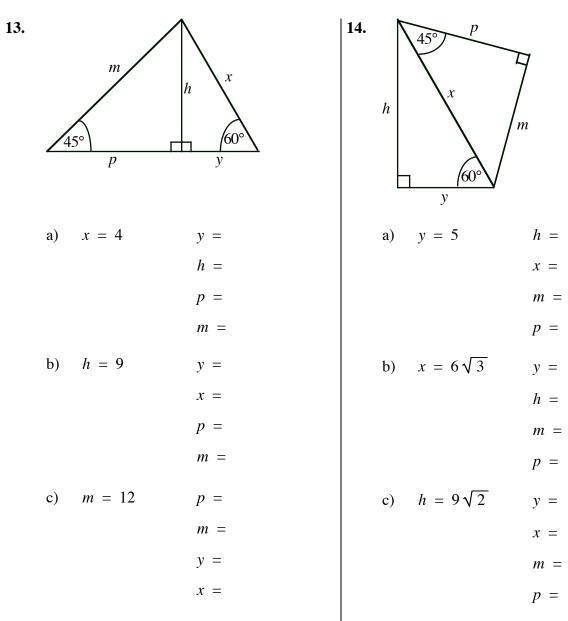
- b) Draw its graph.
- c) What is the equation of the circle?

Verify that the given point is on the unit circle.

7.
$$\left(-\frac{5\sqrt{3}}{9}, \frac{\sqrt{6}}{9}\right)$$

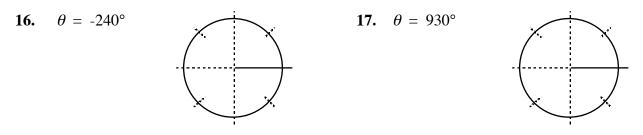
Use the identity $\sin\theta = \pm \sqrt{1 - \cos^2\theta}$ to find $\sin\theta$.

8.
$$\cos\theta = -\frac{\sqrt{5}}{3}$$
 and θ terminates in QIII..

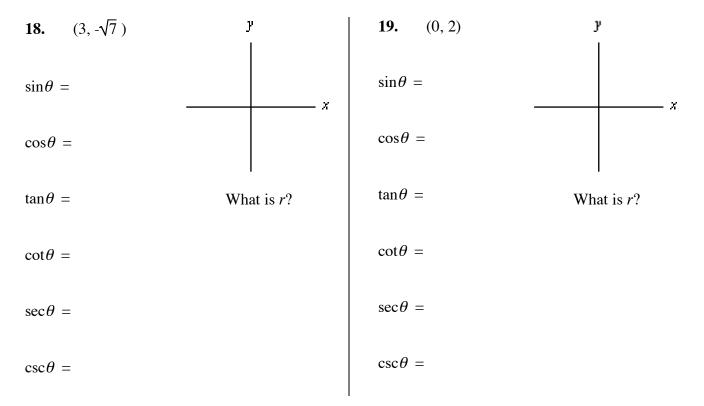

- 9. The radius of a circle is 4 inches, and the measure of Arc_{AB} is $\frac{20\pi}{3}$. Determine the measure of the central angle that subtends Arc_{AB}.
- **10.** The radius of a circle is 6 inches, and

the measure of a central angle, $m \angle AOB$ is 80°. Determine the length of the arc it subtends.

Find the value of x in the given triangle and simplify completely.

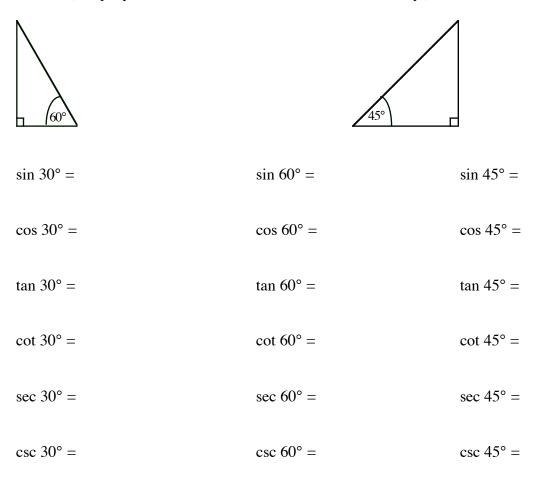


Find the values of h, m, p, x, and y, which represent the lengths of the sides of these triangles. Simplify completely.



- **15.** Based on the given information, in which quadrant does θ terminate?
- **a**) $\sec\theta < 0$ and $\sin\theta > 0$ **b**) $\tan\theta > 0$ and $\cos\theta < 0$
- c) $\csc\theta > 0$ and $\tan\theta > 0$ d) $\cot\theta < 0$ and $\cos\theta < 0$

For each given angle measure, (i) locate it in a circle using standard position, and (ii) identify an angle **between 0° and 360°** that is coterminal with it.



Locate the given point in the *x*-*y*-plane, and draw a positive angle θ whose terminal side contains the point. Then, find the values of the six trig functions of θ and simplify.

Find and simplify the requested trig values based on the information given. Rationalize the denominator, if necessary.

- **20.** If θ terminates in Quadrant IV
and $\cot \theta = -\frac{3}{4}$, find**21.** If θ terminates in Quadrant II
and $\csc \theta = \frac{3}{\sqrt{5}}$, find $\sin \theta =$ $\sin \theta =$ $\tan \theta =$ $\cos \theta =$ $\sec \theta =$ $\tan \theta =$
- **22.** Use the given triangles and mark them however you wish to assist you in finding the following trig values. (Simplify and rationalize the denominator, if necessary.)

Evaluate each. Simplify; rationalize the denominator, if necessary.

23. $2\sqrt{3} \sin 60^{\circ}$ **24.** $\sqrt{\cot 45^{\circ}}$

- **25.** $\sqrt{\sec 60^\circ}$ **26.** $(\tan 30^\circ)^2$
- **27.** $(\csc 45^\circ)^2$ **28.** $\tan 60^\circ \cdot \cos 30^\circ$