A. 5 Complex Fractions

A complex fraction is any fraction in which the numerator or the denominator, or both, contain one or more fractions. Examples of complex fractions include
$\frac{5}{\frac{7}{8}}$
$\frac{\frac{2}{3}}{6}$
$\frac{1}{\frac{5}{2}}$
$\frac{\frac{x}{2 y}}{\frac{3}{y^{2}}}$
$\frac{\frac{2}{3}+\frac{5}{6}}{\frac{5}{4}-\frac{1}{2}}$
$\frac{\frac{1}{x}-\frac{3}{2 x}}{1+\frac{5}{x^{2}}}$

Simplifying Complex Fractions, Method 1

If a complex fraction contains no addition or subtraction, then it can be simplified by first writing the fraction as division.

For example, $\frac{\frac{2}{3}}{\frac{5}{4}}$ can be rewritten as $\frac{2}{3} \div \frac{5}{4}$. This can be simplified by inverting the second fraction and multiplying: $\frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15}$, which cannot simplify any further.

Example 1: Simplify each complex fraction by first rewriting it using the division symbol.
a) $\frac{5}{\frac{7}{8}}$
b) $\frac{w}{\frac{x}{w}}$
c) $\frac{\frac{2}{3}}{6}$
d) $\frac{\frac{x}{2 y}}{\frac{3}{y^{2}}}$

Procedure: First rewrite each using the division symbol and then invert and multiply.

Answer:
a) $\frac{5}{\frac{7}{8}}=5 \div \frac{7}{8}=\frac{5}{1} \cdot \frac{8}{7}=\frac{40}{7}$
b) $\frac{w}{\frac{x}{w}}=w \div \frac{x}{w}=\frac{w}{1} \cdot \frac{w}{x}=\frac{w^{2}}{x}$
c) $\frac{\frac{2}{3}}{6}=\frac{2}{3} \div \frac{6}{1}=\frac{2}{3} \cdot \frac{1}{6}=\frac{2}{18}=\frac{1}{9}$
d) $\frac{\frac{x}{2 y}}{\frac{3}{y^{2}}}=\frac{x}{2 y} \div \frac{3}{y^{2}}=\frac{x}{2 y} \cdot \frac{y^{2}}{3}=\frac{x y^{2}}{6 y}=\frac{x y}{6}$

You Try It 1 Simplify each complex fraction by first rewriting it using the division symbol. Use Example 1 as a guide.

a) $\frac{\frac{2}{3}}{\frac{7}{5}}$
b) $\frac{10}{\frac{5}{4}}$
c) $\frac{\frac{x}{y}}{\frac{3 x}{y^{2}}}$

Simplifying Complex Fractions, Method 2

A second method of simplifying complex fractions is to clear all denominators directly, while in its complex form. We do so by multiplying the whole fraction by a carefully chosen value of 1 , such as $\frac{7}{7}$, $\frac{x}{x}$, or $\frac{3 w^{2}}{3 w^{2}}$.

For example, in the complex fraction $\frac{\frac{4}{5}}{\frac{3}{2}}$, we can clear the denominators, 2 and 5 , by using the common multiplier of 10 , multiplying the whole fraction by $\frac{10}{10} \cdot(10$ is the least common denominator for $\frac{4}{5}$ and $\frac{3}{2}$). In this case, $\frac{10}{10}$ is better written as $\frac{\frac{10}{1}}{\frac{10}{1}}$ so that we can more easily multiply:

$$
\frac{\frac{4}{5}}{\frac{3}{2}} \cdot \frac{\frac{10}{1}}{\frac{10}{1}}=\frac{\frac{4}{5} \cdot \frac{10}{1}}{\frac{3}{2} \cdot \frac{10}{1}}=\frac{\frac{40}{5}}{\frac{30}{2}}=\frac{8}{15}
$$

Note: We use LCD to abbreviate least common denominator.
Let's put Method 2 into practice.

Example 2: \quad Simplify each complex fraction by using Method 2.
a) $\frac{5}{\frac{7}{8}}$
b) $\frac{\frac{7}{8}}{\frac{3}{4}}$
c) $\frac{\frac{3}{x}}{\frac{2}{x^{2}}}$
d) $\frac{\frac{x}{2 y}}{\frac{3}{y^{2}}}$

Procedure: First recognize the least common denominator (LCD), then use it as the common multiplier. In part a), write the numerator as a fraction, $\frac{5}{1}$. Follow each step carefully.

Answer:
a) $\quad \operatorname{LCD}=8: \frac{\frac{5}{1}}{\frac{7}{8}} \cdot \frac{\frac{8}{1}}{\frac{8}{1}}=\frac{\frac{5}{1} \cdot \frac{8}{1}}{\frac{7}{8} \cdot \frac{8}{1}}=\frac{\frac{5}{1} \cdot \frac{8}{1}}{\frac{7}{1} \cdot \frac{1}{1}}=\frac{40}{7}$
b) $\quad \operatorname{LCD}=8: \frac{\frac{7}{8}}{\frac{3}{4}} \cdot \frac{\frac{8}{1}}{\frac{8}{1}}=\frac{\frac{7}{8} \cdot \frac{8}{1}}{\frac{3}{4} \cdot \frac{8}{1}}=\frac{\frac{7}{1} \cdot \frac{1}{1}}{\frac{3}{1} \cdot \frac{2}{1}}=\frac{7}{6}$
c) $\operatorname{LCD}=x^{2}: \frac{\frac{3}{x}}{\frac{2}{x^{2}}} \cdot \frac{\frac{x^{2}}{1}}{\frac{x^{2}}{1}}=\frac{\frac{3}{x} \cdot \frac{x^{2}}{1}}{\frac{2}{x^{2}} \cdot \frac{x^{2}}{1}}=\frac{\frac{3}{1} \cdot \frac{x}{1}}{\frac{2}{1} \cdot \frac{1}{1}}=\frac{3 x}{2}$
d) $\quad \operatorname{LCD}=2 y^{2}: \frac{\frac{x}{2 y}}{\frac{3}{y^{2}}} \cdot \frac{\frac{2 y^{2}}{1}}{\frac{2 y^{2}}{1}}=\frac{\frac{x}{2 y} \cdot \frac{2 y^{2}}{1}}{\frac{3}{y^{2}} \cdot \frac{2 y^{2}}{1}}=\frac{\frac{x}{1} \cdot \frac{y}{1}}{\frac{3}{1} \cdot \frac{2}{1}}=\frac{x y}{6}$
$\overline{\text { You Try It 2 }}$ Simplify each complex fraction by using Method 2. Use Example 2 as a guide.
a) $\frac{\frac{5}{8}}{\frac{3}{2}}$
b) $\frac{\frac{4}{9}}{\frac{8}{3}}$
c) $\quad \frac{\frac{4 y^{2}}{w^{2}}}{\frac{8 y}{3 w}}$

When a Complex Fraction is, well ... MOre complex

If a complex fraction contains addition or subtraction, we cannot use Method 1 without first creating a single fraction in both the numerator and denominator. As an alternative, we can use Method 2 and multiply the complex fraction by the LCD of all of the smaller fractions within.

For example, the complex fraction $\frac{\frac{2}{3}+\frac{5}{6}}{\frac{5}{4}-\frac{1}{2}}$ has four denominators within it: 3, 6, 4, and 2. The LCD is 12 , so the common multiplier for the entire fraction is 12 , and we use it to clear all of the denominators within the complex fraction.

$$
\begin{aligned}
& \text { Multiply the whole fraction by } \frac{12}{12} \text {, better written as } \frac{\frac{12}{1}}{\frac{12}{1}} \text {, as shown here: } \\
& =\frac{\frac{2}{3}+\frac{5}{6}}{\frac{5}{4}-\frac{1}{2}} \cdot \frac{\frac{12}{1}}{\frac{12}{1}} \\
& \text { Multiply } \frac{12}{1} \text { to both the numerator and the denominator. } \\
& \text { Distribute } \frac{12}{1} \text { to each term in the numerator } \\
& \text { and to each term in the denominator. } \\
& =\frac{\frac{2}{3} \cdot \frac{12}{1}+\frac{5}{6} \cdot \frac{12}{1}}{\frac{5}{4} \cdot \frac{12}{1}-\frac{1}{2} \cdot \frac{12}{1}} \quad \text { Simplify each product of fractions within by dividing out common factors. } \\
& =\frac{8+10}{15-6} \quad \text { Again, simplify in the numerator and in the denominator. } \\
& =\frac{18}{9}=2 \quad \text { Simplify this fraction. }
\end{aligned}
$$

Your work might look a little more like this:
... or you might distribute and cancel mentally as you go, such as ...

$$
\frac{\frac{2}{3}+\frac{5}{6}}{\frac{5}{4}-\frac{1}{2}} \cdot \frac{\frac{12}{1}}{\frac{12}{1}}=\frac{8+10}{15-6}=\frac{18}{9}=2
$$

Example 3: Simplify the complex fraction by using Method 2, described above.

$$
\frac{\frac{4}{x}-\frac{3}{2 x}}{1+\frac{5}{x^{2}}}
$$

Procedure: Make every term a fraction, if it isn't already. That will help in the multiplication process. Next, find the least common denominator and use it to create a form of 1.

Answer: First, the common denominator is $2 x^{2}$. Let's go right to the distribution step where each small fraction is multiplied by the $\frac{2 x^{2}}{1}$.

$$
\frac{\frac{4}{x} \cdot \frac{2 x^{2}}{1}-\frac{3}{2 x} \cdot \frac{2 x^{2}}{1}}{\frac{1}{1} \cdot \frac{2 x^{2}}{1}+\frac{5}{x^{2}} \cdot \frac{2 x^{2}}{1}}=\frac{\frac{4}{1} \cdot \frac{2 x}{1}-\frac{3}{1} \cdot \frac{x}{1}}{\frac{1}{1} \cdot \frac{2 x^{2}}{1}+\frac{5}{1} \cdot \frac{2}{1}}=\frac{8 x-3 x}{2 x^{2}+10}=\frac{5 x}{2 x^{2}+10}
$$

$\overline{\text { You Try It } 3}$ Simplify each complex fraction using Method 2. Use Example 3 as a guide.
a) $\frac{\frac{3}{8}+\frac{1}{6}}{2-\frac{1}{4}}$
b) $\frac{\frac{v}{4}-\frac{1}{v}}{\frac{1}{2}-\frac{1}{v}}$

You Try It Answers

You Try It 1:
a) $\quad \frac{10}{21}$
b) 8
c) $\frac{y}{3}$

You Try It 2:
a) $\frac{5}{12}$
b) $\frac{1}{6}$
c) $\frac{3 y}{2 w}$

You Try It 3:
a) $\frac{13}{42}$
b) $\frac{v+2}{2}$
or $\frac{v}{2}+1$

A. 5 Focus Exercises

Simplify each complex fraction using any method.

1. $\frac{\frac{10}{9}}{\frac{25}{12}}$
2. $\frac{12}{\frac{6}{5}}$
3. $\frac{\frac{3 m}{p}}{\frac{5 m}{2 p}}$
4. $\frac{\frac{u}{3 v}}{6 u}$

Simplify each complex fraction using Method 2.
5. $\frac{1-\frac{5}{2}}{1+\frac{2}{3}}$
6. $\frac{\frac{5}{12}+\frac{1}{3}}{\frac{2}{3}-\frac{1}{4}}$
7. $\frac{\frac{2}{3}-\frac{1}{2}}{1-\frac{1}{6}}$
8. $\frac{1+\frac{2}{y}}{\frac{y}{3}+\frac{2}{3}}$
9. $\frac{\frac{1}{6}-\frac{1}{2 w}}{\frac{1}{3 w}-\frac{1}{w^{2}}}$
10. $\frac{1-\frac{1}{y^{2}}}{\frac{1}{y}+\frac{1}{y^{2}}}$
11. $\frac{\frac{1}{6}+\frac{4}{3 x}+\frac{2}{x^{2}}}{1+\frac{2}{x}}$
12. $\frac{\frac{1}{2}-\frac{3}{x}+\frac{4}{x^{2}}}{1-\frac{2}{x}}$

