## Section 1.4 Circles

## The Value of $\pi$

The circumference of a circle is like the perimeter of a triangle or of a rectangle; in other words, the circumference is the measure around the circle.

Thousands of years ago, a question that early mathematicians struggled with was, "What is the ratio of the circumference of a circle to its diameter?" Early cultures, such as the Babylonians, Greek, and Egyptians, knew that this ratio was a constant, and as early as $2,000 \mathrm{BCE}$ had estimated its value at about $3 \frac{1}{8}=(3.125)$ and $4 \cdot\left(\frac{8}{9}\right)^{2}=(3.1605)$.


Through the ages, more and more precise measurements were taken. Some thought the ratio to be $\frac{22}{7}$, which is approximately 3.1428571 . We have, of course, since learned that the actual value is an irrational number: a non-repeating, non-terminating decimal. We use the Greek letter $\pi$ (pi) to represent this constant ratio.

Here is a more accurate approximation: $\quad \pi \approx 3.1415926535$...
As you can see, the fraction $\frac{22}{7}$ is not far off for quick calculations. Also, for quick decimal calculations, $\pi$ is often represented as just 3.14 . For our purposes, though, we'll leave the number in its symbolic form, $\pi$.

So, the ratio of the circumference of a circle to its diameter is $\pi$ :

$$
\begin{aligned}
\frac{\text { Circumference }}{\text { diameter }}=\pi \quad \rightarrow \quad \frac{C}{d} & =\pi & & \text { Multiply each side by } d . \\
C & =\pi \cdot d & & \text { Use } d=2 r . \\
C & =\pi \cdot(2 r) & & \text { Simplify. } \\
C & =2 \pi r & &
\end{aligned}
$$

In summary,

$$
\text { Circumference }=2 \pi r
$$

## The LengTh of an Arc

Recall from Section 1.1, an angle with its vertex at the center of a circle is called a central angle. A central angle in a circle creates a sector of the circle, and it subtends an arc on the circle. For example, in the diagram, $\angle A O B$ creates arc $A B$ and sector $A O B$.

We may be interested in the length of the arc and/or the area of the sector. These can be determined by setting up a proportion between the sector and the entire circle.


Note 2: $\quad \theta$ (theta) is the eighth letter of the Greek alphabet.

|  | Arc length | Angle <br> measure |
| :---: | :---: | :---: |
| Sector | $s$ | $\theta$ |
| Whole circle | $2 \pi r$ | $360^{\circ}$ |

$$
\begin{aligned}
\frac{\text { length of the arc }}{\text { circumference of circle }} & =\frac{\text { measure of the central angle }}{360^{\circ}} \\
\frac{s}{2 \pi r} & =\frac{\theta}{360^{\circ}}
\end{aligned}
$$

This proportion has three variables: $s, r$, and $\theta$. If we know the values of two of them, such as the radius, $r$, and the arc length, $s$, then we can solve for the missing value.

Knowing the radius of a circle, we can use this proportion to find either the arc length, $s$, or the central angle measure, $\theta$, depending on what other information we are given.

Caution: If not written well, $s$ can look like 5, so it is common to use $x$ in place of $s$ when solving this proportion.

Example 1: A circle has a radius of 5 inches. What is the length of the arc, $s$, with a central angle, $\theta$, of $90^{\circ}$ ? (Note: We will use $x$ to represent $s$ in the equation so that $s$ isn't mistaken for a 5.)

Procedure:

$$
\begin{array}{rlrl}
\frac{s}{2 \pi r} & =\frac{\theta}{360^{\circ}} & & \text { Replace } r \text { with } 5 \text { and } \theta \text { with } 90^{\circ} \text {, and let } x \text { represent } s . \\
\frac{x}{2 \cdot \pi \cdot 5} & =\frac{90^{\circ}}{360^{\circ}} & & \text { Simplify each side. } \frac{90 \text { degrees }}{360 \text { degrees }}=\frac{90}{360}=\frac{1}{4} \\
\frac{x}{10 \pi} & =\frac{1}{4} & & \text { Isolate } x \text { by multiplying each side by } \frac{10 \pi}{1} . \\
\frac{10 \pi}{1} \cdot \frac{x}{10 \pi} & =\frac{1}{4} \cdot \frac{10 \pi}{1} & & \text { Simplify. } \\
x & =\frac{10 \pi}{4} & & \text { Simplify. } \\
s & =\frac{5 \pi}{2} \text { inches } &
\end{array}
$$

You Try It 1 A circle has a radius of 9 feet. What is the length of the arc with a central angle of $120^{\circ}$ ?

Example 2: A circle has a radius of 6 cm . What is measure of the central angle, $\theta$, that subtends an arc with length $4 \pi \mathrm{~cm}$ ?

Procedure: Again we use the established proportion: $r=6, s=4 \pi$. The unknown value is $\theta$.

$$
\frac{s}{2 \pi r}=\frac{\theta}{360^{\circ}} \quad \quad \text { Replace } r \text { with } 6 \text { and } s \text { with } 4 \pi
$$

Answer:

$$
\begin{aligned}
\frac{4 \pi}{2 \cdot \pi \cdot 6} & =\frac{\theta}{360^{\circ}} & & \text { Simplify each side. } \\
\frac{4 \pi}{12 \pi} & =\frac{\theta}{360^{\circ}} & & \text { Simplify the left side to } \frac{1}{3} ; \text { isolate } \theta \text { by } \\
\frac{360^{\circ}}{1} \cdot \frac{1}{3} & =\frac{\theta}{360^{\circ}} \cdot \frac{360^{\circ}}{1} & & \text { Simplify. } \\
\frac{360^{\circ}}{3} & =\theta & & \text { Simplying each side by } \frac{360^{\circ}}{1} . \\
\theta & =120^{\circ} & &
\end{aligned}
$$

You Try It 2 A circle has a radius of 4 meters. What is measure of the central angle that subtends an arc with length $6 \pi$ meters?

## Angles Around the Circle: Standard Position

To understand more about angles around the circle we can use the Cartesian Coordinate System, the $x$ - $y$-plane. We center a circle at the origin with an unspecified radius, $r$.

A central angle in standard position has its initial side on the positive $x$-axis. The other side of the angle is called the terminal side.

An angle is considered to be positive when the terminal side "sweeps" counterclockwise to generate the angle.
 The arrow representing $60^{\circ}$ shows this counterclockwise sweep.

## Angles More than $180^{\circ}$ (Reflex Angles)

The notion that a full circle is $360^{\circ}$ allows us to consider angle measures that are greater than $180^{\circ}$. For example, an angle encompassing more than half of the circle has an angle measure more than $180^{\circ}$.

For example, $\frac{2}{3}$ of a circle is $240^{\circ}$ :

$$
\frac{2}{3} \text { of } 360^{\circ}=\frac{2}{3} \cdot \frac{360^{\circ}}{1}=\frac{2}{1} \cdot \frac{120^{\circ}}{1}=240^{\circ}
$$



An angle measuring between $180^{\circ}$ and $360^{\circ}$ is called a reflex angle. (It is not a commonly used term, but it's nice to know there is a word for such angles.)

We can label special places along the circle with their corresponding angle measures.

In the diagram at right you can see the degree measures along the $x$-and $y$-axes. Notice that the circle even allows for a $0^{\circ}$ angle.

Whereas the angle measures of a triangle are restricted to being between $0^{\circ}$ and $180^{\circ}$, angle measures around a circle have no restrictions.


Recall from Section 1.1, to aid us in locating angles around the circle, we can use the horizontal and vertical radii-now referred to as the angle measures on the $x$ and $y$-axes-along with a series of $45^{\circ}$ angles,

For example, to draw a $210^{\circ}$ angle in the circle, we
i) first recognize that it is between $180^{\circ}$ and $270^{\circ}$;

ii) refine the location by considering the half-way
value, $225^{\circ}$.
iii) $210^{\circ}$ is between $180^{\circ}$ and $225^{\circ}$, and it is closer to $225^{\circ}$ than it is to $180^{\circ}$.


## Negative Angles

Central angles in standard position are considered negative when the terminal side sweeps clockwise to generate the angle. The arrow indicates this clockwise sweep.


You Try It 3 For each, draw a central angle in a circle with the given number of degrees. (Hint: Count backwards $90^{\circ}$ at a time.)
a) $\quad \theta=-120^{\circ}$

b) $\quad \theta=-215^{\circ}$

c) $\quad \theta=-310^{\circ}$


## ANGLES GREATER THAN 360

With the circle allowing us to have unusual angles - those more than $180^{\circ}$ and negative angles - why not have angles that go around the circle more than once?

With the circle, we can consider angles that are more than one full revolution $\left(360^{\circ}\right)$, such as $420^{\circ}$.


At right we see the next set of angle values on the axes and at the half-way marks:

$\overline{\text { You Try It } 4}$ For each, draw a central angle in a circle with the given number of degrees. Show the "wrapping" of the angle as it passes $360^{\circ}$.
a) $\theta=385^{\circ}$
b) $\theta=500^{\circ}$

c) $\theta=700^{\circ}$


## Coterminal Angles

Angles that share a common terminal side are said to be coterminal. Two angles that are coterminal differ by $360^{\circ}$ (one full circle) or a multiple of $360^{\circ}$, such as $720^{\circ}$ or $1080^{\circ}$.



Example 3: Determine whether or not angles with these measures are coterminal.
a) $490^{\circ}$ and $90^{\circ}$
b) $150^{\circ}$ and $870^{\circ}$
c) $315^{\circ}$ and $-45^{\circ}$

Procedure: Find the difference between the angles. If the difference is $360^{\circ}$ or a multiple of $360^{\circ}$ (such as $720^{\circ}$ ), the angles are coterminal.

Answer: a) $490^{\circ}-90^{\circ}=400^{\circ}$
They are not coterminal; they do not differ by a multiple of $360^{\circ}$.
b) $870^{\circ}-150^{\circ}=720^{\circ}$

They are coterminal; they differ by a multiple of $360^{\circ}$.
c) $315^{\circ}-\left(-45^{\circ}\right)=315^{\circ}+45^{\circ}=360^{\circ}$

They are coterminal; they differ by a multiple of $360^{\circ}$.

You Try It 5 Determine whether or not angles with these measures are coterminal.
a) $160^{\circ}$ and $500^{\circ}$
b) $400^{\circ}$ and $-40^{\circ}$
c) $-75^{\circ}$ and $-435^{\circ}$
d) $150^{\circ}$ and $-570^{\circ}$

Example 4: Find both a positive and a negative angle around the circle that is coterminal with the given angle.
a) $210^{\circ}$
b) $600^{\circ}$
c) $\quad-75^{\circ}$

Answer: Either add or subtract $360^{\circ}$ (or a multiple of $360^{\circ}$ ) to find these coterminal angles. (There are other answers than those shown here.)
a) $210^{\circ}+360^{\circ}=\mathbf{5 7 0}^{\circ}$ and $210^{\circ}-360^{\circ}=\mathbf{- 1 5 0}^{\circ}$
$570^{\circ}$ and $-150^{\circ}$ are both coterminal with $210^{\circ}$
b) $600^{\circ}-360^{\circ}=\mathbf{2 4 0}$ and $240^{\circ}-360^{\circ}=\mathbf{- 1 2 0}$
$\underline{240^{\circ}}$ and $-120^{\circ}$ are both coterminal with $600^{\circ}$
c) $-75^{\circ}+360^{\circ}=285^{\circ}$ and $-75^{\circ}-360^{\circ}=-435^{\circ}$
$285^{\circ}$ and $-435^{\circ}$ are both coterminal with $-75^{\circ}$

## You Try It 6 Find both a positive and a negative angle around the circle that is coterminal with the

 given angle.a) $160^{\circ}$
b) $400^{\circ}$
c) $-170^{\circ}$

## You Try It Answers

YTI 1: $s=6 \pi$ feet

YTI 3:
a)

b)

c)


YTI 4:

b)

c)


YTI 5: a) No. $500^{\circ}-160^{\circ}=340^{\circ}$
YTI 6: a) $520^{\circ}$ and $-200^{\circ}$
b) No. $400^{\circ}-\left(-40^{\circ}\right)=440^{\circ}$
b) $40^{\circ}$ and $-320^{\circ}$
c) Yes. $-75^{\circ}-\left(-435^{\circ}\right)=360^{\circ}$
c) $190^{\circ}$ and $-530^{\circ}$
d) Yes. $150^{\circ}-\left(-570^{\circ}\right)=720^{\circ}$

## Section 1.4 Focus Exercises

Given the radius of a circle and the measure of a central angle, $m \angle A O B$, determine the length of the arc it subtends.

1. $r=2, m \angle A O B=180^{\circ}$
2. $r=1, m \angle A O B=30^{\circ}$
3. $r=8, m \angle A O B=20^{\circ}$
4. $r=6, m \angle A O B=40^{\circ}$
5. $r=9, m \angle A O B=200^{\circ}$
6. $r=\frac{1}{2}, m \angle A O B=150^{\circ}$
7. $r=\frac{5}{2}, m \angle A O B=45^{\circ}$

Given the radius of a circle and the measure of an arc, $m \operatorname{Arc}_{A B}$, determine the measure of the central angle that subtends it.
9. $r=2, m \operatorname{Arc}_{A B}=\pi$
10. $r=6, m \operatorname{Arc}_{A B}=2 \pi$
11. $r=3, m \operatorname{Arc}_{A B}=2 \pi$
12. $r=5, m \operatorname{Arc}_{A B}=\pi$
13. $r=1, m \operatorname{Arc}_{A B}=\frac{\pi}{2}$
15. $r=8, m \operatorname{Arc}_{A B}=10 \pi$
14. $r=\frac{1}{2}, m \operatorname{Arc}_{A B}=\frac{\pi}{3}$
16. $r=\frac{5}{2}, m \operatorname{Arc}_{A B}=\frac{15 \pi}{8}$

For each given angle measure, (i) locate it in a circle using standard position, and (ii) identify an angle between $0^{\circ}$ and $360^{\circ}$ that is coterminal with it.
17. $-60^{\circ}$
18. $-200^{\circ}$

19. $-270^{\circ}$


21. $-445^{\circ}$

22. $-800^{\circ}$


For each given angle measure, (i) locate it in a circle using standard position, and (ii) identify an angle between $-360^{\circ}$ and $0^{\circ}$ that is coterminal with it.
23. $100^{\circ}$

24. $240^{\circ}$

25. $180^{\circ}$

26. $380^{\circ}$

27. $490^{\circ}$

28. $930^{\circ}$


