Simplifying a hard radical problem

Here's a hard problem in \#7(e) on page 1.10-10:
Simplify $\frac{\sqrt{3}}{\sqrt{2}}+\sqrt{24}\left\{\begin{array}{l}\text { We need to do two things separately before we can put } \\ \text { it all together. We need to rationalize the denominator } \\ \text { in the fraction and we need to simplify } \sqrt{24} .\end{array}\right.$

First, let's simplify: $\sqrt{24}=\sqrt{4 \cdot 6}=\sqrt{4} \cdot \sqrt{6}=2 \sqrt{6}$
Next, let's rationalize the denominator of the fraction. Multiply both numerator and denominator by $\sqrt{2}$, which creates a perfect square in the denominator:

$$
\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}}{\sqrt{4}}=\frac{\sqrt{6}}{2}
$$

So, this is what we have so far: $\frac{\sqrt{3}}{\sqrt{2}}+\sqrt{24}=\frac{\sqrt{6}}{2}+2 \sqrt{6}$

Next, we have to get a common denominator of 2; think of $2 \sqrt{6}$ as $\frac{2 \sqrt{6}}{1}$ and multiply it by $\frac{2}{2}$:

$$
\frac{\sqrt{6}}{2}+2 \sqrt{6}=\frac{\sqrt{6}}{2}+\frac{2 \sqrt{6}}{1} \cdot \frac{2}{2}=\frac{\sqrt{6}}{2}+\frac{4 \sqrt{6}}{2}
$$

Now that they have a common denominator, we can add the two fractions;

$$
\frac{\sqrt{6}}{2}+\frac{4 \sqrt{6}}{2}=\frac{\sqrt{6}+4 \sqrt{6}}{2}
$$

Lastly, since the radicals are like we can combine them:

$$
\frac{\sqrt{6}+4 \sqrt{6}}{2}=\frac{5 \sqrt{6}}{2}
$$

Whew!!! Why did I put that in the book?

